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Problem Statement

Labeled Data: (x1, y1) . . . (xl, yl), where YL = (y1 . . . yl) and yi ∈ {1 . . . C}.
Unlabeled Data: (xl+1, yl+1) . . . (xl+u, yl+u), where YU = (yl+1 . . . yl+u) are
unobserved , usually l� u. Let X = (x1 . . . xl+u) and xi ∈ RD (for simplicity).

Problem is to estimate YU from X and YL.

Simple Model: P (Y |X) =
1
Z

exp

l+u∑
i=1

∑
j<i

δ(yi, yj)Aij


Aij is the affinity between data point i and j, e.g.: Aij = exp

(
−
d2
ij

2σ2

)

yi

yj

yk

  

  

 

Solutions to Label Inference Problem:

• compute P (YU |X,YL, σ) or

• yMAP
i = arg maxyi P (yi|YL, X, σ), or

• YMAP
U = arg maxYU P (YU |YL, X, σ)

(multiway cut problem / metric labeling)

This is a Markov Random Field, Potts Model, Boltzmann Machine, or Undirected Graphical Model.



Learning Problem

Simple Model: P (Y |X) =
1
Z

exp

l+u∑
i=1

∑
j<i

δ(yi, yj)Aij


Aij is the affinity between data point i and j, e.g.: Aij = exp

(
−
d2
ij

2σ2

)
Learning problem: how do we set σ?

“Obvious” Solution: Maximum Likelihood or MAP:

σMAP = arg max
σ

P (σ|X,YL) = arg max
σ

P (YL|X,σ)P (σ)

= arg max
σ

∑
YU

P (YL, YU |X,σ)P (σ)

∂

∂σ
logP (σ|X,YL) =

∂

∂σ
logP (YL|X,σ) +

∂

∂σ
logP (σ)

∂

∂σ
logP (YL|X,σ) =

〈
∂

∂σ
logP (Y |X,σ)

〉
c

−
〈
∂

∂σ
logP (Y |X,σ)

〉
u

Difference between clamped and unclamped expectations.



Computing Expectations

Note 〈f(Y )〉c =
∑
YU
f(Y )P (YU |YL, X, σ) and 〈f(Y )〉u =

∑
Y f(Y )P (Y |X,σ).

Many methods exist for computing or approximating these expectations.

• Enumeration

• Gibbs Sampling

• Gibbs & Metropolis Sampling

• Swendsen Wang Sampling

• Mean Field

• Structured Variational Approximations

• Loopy Belief Propagation (Bethe/Kikuchi)

• Convex Combinations of Trees



Extended Model
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We define a richer model
p(O, Y |X,Θ) where,
Y are the true (hidden) labels;
O are the noisy observed labels;
Includes three terms: “separation”,
“assignment”, and class priors:

1
Z

exp

l+u∑
i=1

∑
j<i

δ(yi, yj)Aij +
l+u∑
i=1

C∑
c=1

C∑
c′=1

δ(oi, c)δ(yi, c′)eγcc′ +
l+u∑
i=1

C∑
c=1

δ(yi, c)βc


βc defines class priors. γcc′ defines a cost matrix for mislabeling a class c′ as c.

Affinity matrix is parameterized: Aij = exp

{
α0 −

D∑
d=1

(xdi − xdj)2

2αd2

}
α = {α0, . . . , αD} are analogous to the length scales in a Gaussian process.

The parameters of this MRF are Θ = {α, β, γ}.



Double Arcs Datasets
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Note: Max likelihood Θ disconnects all points if only one point per class.



Cube with Irrelevant Dimensions
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Only the first dimension x1 is relevant to classification.



Noisy Labels
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The Noisy Labels Dataset. x1 and x2 are intentionally mislabeled in (a). The
trained MRF (b) corrects x1’s, but not x2’s, label.



Several Synthetic Datasets
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Several synthetic datasets. Large symbols are labeled data, dots are unlabeled.



Log Likelihood for Synthetic Datasets
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Log likelihood of labeled data (y-axis) vs. σ (x-axis) for the synthetic datasets.
The vertical line marks the σ learned with gradient ascent after we add a prior.



Results for Synthetic Datasets
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The labels of the synthetic datasets, under the learned σ with a prior.



Summary of MRF for labeled/unlabeled classification

Advantages:

• sound probabilistic framework

• interpretable hyperparameters

Disadvantages:

• The likelihood of the observed data is not a sensible objective function for
classification with very few labeled points. We get unintuitive classifications.

• Exact and sampling methods are slow

• Sensitive to initial conditions; local minima.

• Inherently transductive: optimal Θ only optimal for some data set size.

More details in: Zhu, X. and Ghahramani, Z. (2002) Towards Semi-supervised Classification
with Markov Random Fields. Technical Report CMU-CALD-02-106. Carnegie Mellon.



Part II: Bayesian Learning of Undirected Graphical Models

In an Undirected Graphical Model (or Markov Network), the joint probability over
all variables can be written in a factored form:

P (x) =
1
Z

∏
j

gj(xCj)

where x = [x1, . . . , xK], and

Cj ⊆ {1, . . . ,K}

are subsets of the set of all variables, and xS ≡ [xk : k ∈ S].

This type of probabilistic model can be represented graphically.

Graph Definition: Let each variable be a node. Connect nodes i and k if there
exists a set Cj such that both i ∈ Cj and k ∈ Cj. These sets form the cliques of
the graph (fully connected subgraphs).



Undirected Graphical Models: An Example

A

C

B

D

E

P (A,B,C,D,E) =
1
Z
g(A,C)g(B,C,D)g(C,D,E)

Semantics: Every node is conditionally independent from its non-neighbors
given its neighbors.

Conditional Independence: X⊥⊥Y |V ⇔ p(X|Y, V ) = p(X|V ) for p(Y, V ) > 0
also X⊥⊥Y |V ⇔ p(X,Y |V ) = p(X|V )p(Y |V ).



Examples of Undirected Graphical Models

• Markov Random Fields

• Exponential Language Models

p(s) =
1
Z
p0(s) exp

{∑
i

λifi(s)

}

• Products of Experts

p(x) =
1
Z

∏
j

pj(x|θj)

? Boltzmann Machines



Boltzmann Machines

Undirected graph over a vector of binary variables si ∈
{0, 1}. Variables can be hidden or visible (observed).

P (s|W ) =
1
Z

exp

∑
j<i

Wijsisj


where Z is the partition function (normalizer)

Maximum Likelihood Learning Algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV ,W ) (“clamped phase”).
This could be done via a propagation algorithm or (more usually) an
approximate method such as Gibbs sampling.

• M step requires gradients w.r.t. Z, which can be computed by averages w.r.t.
P (s|W ) (“unclamped phase”).

Hebbian and anti-Hebbian rule: ∆Wij = η[〈sisj〉c − 〈sisj〉u]



Why Bayesian Learning?

• Useful prior knowledge can be included (e.g. sparsity)

• Avoids overfitting

• Error bars

• Model selection



A Simple Idea

Define the following joint distribution of weights W and matrix of binary
variables S, organized into N rows (data vectors) and M columns (features,
variables). Some variables on some data points may be hidden and some may
be observed.

p(S,W ) =
1
Z

exp

− 1
2σ2

M∑
i,j=1

W 2
ij +

N∑
n=1

M∑
j<i

Wijsnisnj


Where Z =

∫
dW

∑
S exp{. . .} is a nasty partition function.

Gibbs sampling in this model is very easy!

• Gibbs sample sni given all other s and W : Bernouilli, easy as usual.

• Gibbs sample W given s: diagonal multivariate Gaussian, easy as well.

What is wrong with this approach?



...a Strange Prior on W

p(S,W ) =
1
Z

exp

− 1
2σ2

M∑
i,j=1

W 2
ij +

N∑
n=1

M∑
j<i

Wijsnisnj


This defines a Boltzmann machine for the data given W , but defines a
somewhat strange and hard to compute “prior” on the weights.
What is the prior on W?

p(W ) =
∑
S

p(S,W ) ∝ N(0, σ2I)
∑
S

exp

∑
n,j<i

Wijsnisnj


where the second factor is data-size dependent, so it’s not a valid hierarchical
Bayesian model of the kind W → S. The second factor can be written as:

∑
S

exp

∑
n,j<i

Wijsnisnj

 =

∑
s

exp

∑
j<i

Wijsisj


N

= Z(W )N

This will not work!



Estimating Z(W )

To define a valid prior we need to compute Z(W ) ≡
∑
s exp

{∑
j<iWijsisj

}
.

p(W,S) = p(W )P (S|W ) = P (W )

 1
Z(W )N

exp


N∑
n=1

M∑
j<i

Wijsnisnj




• Mean-field lnZ(W ) ≥
∑
s

q(s)
∑
j<i

Wijsisj +H(q)

where q(s) =
∏
im

si
i (1−mi)(1−si) and H is entropy.

• Tree-based variational approximation. Use a spanning tree for q(s).

• Bethe free energy. Approximate Z(W ) by running loopy propagation and
computing Bethe free energy.

• Annealed Importance Sampling: Z(W )
Z(0) = Z(α1W )

Z(0)
Z(α2W )
Z(α1W ) · · ·

Z(αtW )
Z(αt−1W ) where

0 ≤ α1 . . . ≤ αt = 1.

• Contrastive Sampling: Brief Gibbs sampling starting at data to compute
Z(W )/Z(W ′)



Mean Field vs Tree Variational Approximation
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The tree based approximation found an MST and then used Wiegerinck’s (UAI,
2000) variational approximation.



Metropolis with Importance Sampling Inner Loop

• Sample S given W .

• Sample W given S:

– Propose W ′ given W from some symmetric proposal distribution
– Compute acceptance probability a(W ′|W ) = min(1, p(W

′)
p(W )

p(S|W ′)
p(S|W ) ) where

the second term is:

p(S|W ′)
p(S|W )

= exp

∑
n,j<i

(W ′ij −Wij)snisnj


(
Z(W )
Z(W ′)

)N

and the last term is estimated as below.

Z(W )
Z(W ′)

=

∑
s exp

{∑
j<iWijsisj

}
∑
s exp

{∑
j<iW

′
ijsisj

} =

〈
exp

∑
j<i

(Wij −W ′ij)sisj


〉
p(s|W ′)



Contrastive Sampling to Estimate Z(W )

We wish to compute:

Z(W )
Z(W ′)

=

∑
s exp

{∑
j<iWijsisj

}
∑
s exp

{∑
j<iW

′
ijsisj

}
• Start from data set
• Create a “corrupted” data set, for example, by Gibbs sampling briefly starting

from data using W (or W ′, or many Ws)
• Define q(s) to be the empirical distribution of this corrupted data
• Then use:

Z(W )
Z(W ′)

≈

∑
s q(s) exp

{∑
j<iWijsisj

}
∑
s q(s) exp

{∑
j<iW

′
ijsisj

}
* A pseudo-Bayesian posterior can be computed by fixing q(s). This

concentrates “posterior” mass on weights that are good at explaining the real
data and bad at explaining the corrupted data.

* We get a nice bias/variance trade-off and a huge computational savings!



Part II: Summary and Future Directions

• Tree-based approximations seem to work well, but exponentiating amplifies
any errors.

• We are comparing these methods (and hopefully others) on small BMs where
the exact solution can be computed.

• There is much future work in this area!

http://www.gatsby.ucl.ac.uk/ ∼zoubin
http://www.variational-bayes.org/



Appendix



Clique Potentials and Markov Networks

Definition: a clique is a fully connected subgraph (usually maximal).
Ci will denote the set of variables in the ith clique.

A

C

B

D

E

1. Identify cliques of graph G

2. For each clique Ci assign a non-negative function gi(Ci) which measures
“compatibility”.

3. p(X1, . . . , Xn) = 1
Z

∏
i gi(Ci) where Z =

∑
X1···Xn

∏
i gi(Ci) is normalizer

The graph G embodies the conditional independencies in p (i.e. G is a Markov
Field relative to p): If V lies in all paths between X and Y in G, then X⊥⊥Y |V .



Hammersley–Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive
functions on cliques of G is a Markov Field relative to G.

Definition: The graph G is a Markov Field relative to p if it does not imply any
conditional independence relationships that are not true in p.
(We are usually interested in the minimal such graph.)

Proof: We need to show that the neighbors of X, ne(X) are a Markov Blanket
for X:

p(X,Y, . . .) =
1
Z

∏
i

gi(Ci) =
1
Z

∏
i:X∈Ci

gi(Ci)
∏

j:X/∈Cj

gj(Cj)

=
1
Z
f1

(
X, ne(X)

)
f2

(
ne(X), Y

)
=

1
Z ′
p(X|ne(X)) p(Y |ne(X))

This shows that: p(X,Y |ne(X)) = p(X|ne(X)) p(Y |ne(X))⇔ X⊥⊥Y |ne(X).


