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Problem Statement

Labeled Data: (z1,y1) ... (2, y1), where Yy, = (y1...y;) and y; € {1...C}.
Unlabeled Data: (z;11,yi41)--- (11w, Yiaw), Where Yy = (yjo1...y11) are
unobserved , usually | < u. Let X = (z1...7;4,) and z; € RP (for simplicity).

Problem is to estimate Yy from X and Y7,.

_l-l-u
_ 1
Simple Model: PY|X) = - Xp z; ;5(%,%)1‘1@
1=1 73<e
i i d2.
A;; 1s the affinity between data point 7 and j, e.g.: Aij = exp (;‘2)
o)

Solutions to Label Inference Problem:
e compute P(Yy|X,Yy,o) or
° y,;MAP = arg max,, P(y;|Yr, X, o), or

o YMAP = argmaxy, P(Yy|YL, X, 0)
(multiway cut problem / metric labeling)

This is a Markov Random Field, Potts Model, Boltzmann Machine, or Undirected Graphical Model.



Learning Problem

_l+u
: 1
Simple Model: P(Y|X) = —exp > 6y y) A
z 1 9
d2.
A;; is the affinity between data point ¢ and j, e.g.: A;; =exp (21‘2)
o)
Learning problem: how do we set o7
“Obvious” Solution: Maximum Likelihood or MAP:
omap = argmax P(o|X,Yr)=argmax P(Y|X,o0)P(0)
= argmax » P(Y.,Yy|X,0)P(0)
(o2 YU
9 —log P(o|X,YL) = 9 —log P(YL|X, )—|—Qlo P(o)
do 5 L 9o 5 L Oo 5
0 0 0
—log P(Yr|X,0) = (—logP(Y|X,0) log P(Y|X, 0)
do do . do "

Difference between clamped and unclamped expectations.



Computing Expectations

Note (£(V)), = Sy, f(Y)P(YulVz, X, o) and (f(V)), = ¥y F(V)P(Y]X,0).

Many methods exist for computing or approximating these expectations.

e Enumeration

e Gibbs Sampling

e Gibbs & Metropolis Sampling

e Swendsen Wang Sampling

e Mean Field

e Structured Variational Approximations

e Loopy Belief Propagation (Bethe/Kikuchi)

e Convex Combinations of Trees



Extended Model

We define a richer model
p(0O,Y|X, ©) where,

Y are the true (hidden) labels;

O are the noisy observed labels;
Includes three terms: “separation”,
“assignment”, and class priors:

l+u I+u C C I+u C

%GXP DD 0wy A+ Y Y 804, 0)(yi, )N + Y Y d(yic)Be

1=1 7<1 1=1 c=1 /=1 1=1 c=1

3. defines class priors. ~.. defines a cost matrix for mislabeling a class ¢’ as c.

D d d\2
. o . (zf — 333')
Affinity matrix is parameterized: Ajj=exp{ag— Y
o 200
a = {ag,...,ap} are analogous to the length scales in a Gaussian process.

The parameters of this MRF are © = {«, 5, v}.



Double Arcs Datasets
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Note: Max likelihood © disconnects all points if only one point per class.
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Noisy Labels
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(a) Observed Labels o; (b) Computed Labels y;

The Noisy Labels Dataset. x; and x5 are intentionally mislabeled in (a). The
trained MRF (b) corrects z;’s, but not x5’s, label.



Several Synthetic Datasets
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Several synthetic datasets. Large symbols are labeled data, dots are unlabeled.



Log Likelihood for Synthetic Datasets
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Log likelihood of labeled data (y-axis) vs. o (x-axis) for the synthetic datasets.
The vertical line marks the ¢ learned with gradient ascent after we add a prior.



Results for Synthetic Datasets
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Summary of MRF for labeled/unlabeled classification

Advantages:

e sound probabilistic framework

e interpretable hyperparameters

Disadvantages:

e The likelihood of the observed data is not a sensible objective function for
classification with very few labeled points. We get unintuitive classifications.

e Exact and sampling methods are slow
e Sensitive to initial conditions; local minima.

¢ Inherently transductive: optimal © only optimal for some data set size.

More details in: Zhu, X. and Ghahramani, Z. (2002) Towards Semi-supervised Classification
with Markov Random Fields. Technical Report CMU-CALD-02-106. Carnegie Mellon.



Part |I: Bayesian Learning of Undirected Graphical Models

In an Undirected Graphical Model (or Markov Network), the joint probability over
all variables can be written in a factored form:

P(x) = 5 [T ixc,)

where x = [z1,...,xk], and

are subsets of the set of all variables, and xg = [z : k € S].
This type of probabilistic model can be represented graphically.
Graph Definition: Let each variable be a node. Connect nodes i and k if there

exists a set C; such that both ¢ € C; and k € C;. These sets form the cliques of
the graph (fully connected subgraphs).



Undirected Graphical Models: An Example

o

1
P(A,B,C,D,E) = EQ(A, C)g(B,C,D)g(C,D, E)

Semantics: Every node is conditionally independent from its non-neighbors
given its neighbors.

Conditional Independence: X LY |V < p(X|Y,V)=p(X|V) forp(Y,V) >0
also X LY|V & p(X,Y|V) =p(X|V)p(Y|V).



Examples of Undirected Graphical Models

e Markov Random Fields

e Exponential Language Models
= —1 X )\
p(s) Zpo(S)e p E ifi(s)

e Products of Experts

x Boltzmann Machines [%



Boltzmann Machines

Undirected graph over a vector of binary variables s; €
{0, 1}. Variables can be hidden or visible (observed).

1
P(S’W) — Eexp ZWijSiSj

J<t

where Z is the partition function (normalizer)

Maximum Likelihood Learning Algorithm: a gradient version of EM

e E step involves computing averages w.r.t. P(syl|sy, W) (“clamped phase”).
This could be done via a propagation algorithm or (more usually) an

approximate method such as Gibbs sampling.

e M step requires gradients w.r.t. Z, which can be computed by averages w.r.t.
P(s|W) (“unclamped phase”).

Hebbian and anti-Hebbian rule: AW, = n[(siSj)e — (5iS))u]



Why Bayesian Learning?

Useful prior knowledge can be included (e.g. sparsity)
Avoids overfitting
Error bars

Model selection



A Simple Idea

Define the following joint distribution of weights W and matrix of binary
variables S, organized into N rows (data vectors) and M columns (features,
variables). Some variables on some data points may be hidden and some may

be observed.

1 1 M N M
1,7=1 n=1 53<1

Where Z = [ dWV ) exp{...} is a nasty partition function.

Gibbs sampling in this model is very easy!

e Gibbs sample s,,; given all other s and 1. Bernouilli, easy as usual.

e Gibbs sample W given s: diagonal multivariate Gaussian, easy as well.

What is wrong with this approach?



...a Strange Prioron W

1 1 M N M
1,7=1 n=1 53<1

This defines a Boltzmann machine for the data given W, but defines a

somewhat strange and hard to compute “prior” on the weights.

What is the prior on W?

p(W) = Zp(S, W) oc N(0,0°I) Zexp Z Wii8niSn,;
S

S n,1<1

where the second factor is data-size dependent, so it’s not a valid hierarchical
Bayesian model of the kind W — S. The second factor can be written as:

N

Z exXp Z Wz’jsnisnj = Z exXp Z WijSiSj = Z(W)N
S s

n,7<t 71<1

This will not work!



Estimating Z(W)

To define a valid prior we need to compute Z(W) = > exp {qu Wijsisj}.

p(W.5) = p(W)PSIW) = PIY) | Zmpexp d 323 Wiysns,

e Mean-field InZ(W) > Z q(s) Z Wijsis; + H(q)
S J<t
where ¢(s) = [, m;*(1 — m;)1~=*) and H is entropy.
e Tree-based variational approximation. Use a spanning tree for ¢(s).

e Bethe free energy. Approximate Z(W) by running loopy propagation and
computing Bethe free energy.

e Annealed Importance Sampling: ZZ((VOV)) - Z(Zo‘(lov)v)ggx% - Zf;fjfvw)/) where

OSOél...SOét:]_.

e Contrastive Sampling: Brief Gibbs sampling starting at data to compute
Z(W)/Z(W')



Mean Field vs Tree Variational Approximation
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The tree based approximation found an MST and then used Wiegerinck’s (UAI,

2000) variational approximation.



Metropolis with Importance Sampling Inner Loop

e Sample S given V.

e Sample W given S:

— Propose W’ given W from some symmetric proposal distribution

. : " p(S|W'
— Compute acceptance probability a(W/'|W) = m1n(1,§’f(vmv,)“;((s||w))) where

the second term is:

p(S|W') ;o 2\
p(Sw) — P 2_ (Wi = Wig)snisny (Z(Wf))

n,) <1t

and the last term Is estimated as below.

Z(W) 22 €XP {ZK@- Wijsié‘j} ,
Z(W"y / = (e q > (Wij = Wj)sis,
D s €XD {Zm Wz’jsisj} j<i

p(s|W’)



Contrastive Sampling to Estimate  Z(W)

We wish to compute:

Z(W) 25 ©XP {Zm Wz‘jsisj}
ZWD 5 exp {30, Wsis; |

e Start from data set

e Create a “corrupted” data set, for example, by Gibbs sampling briefly starting
from data using W (or W', or many Ws)

e Define ¢(s) to be the empirical distribution of this corrupted data
e Then use:

Z(W) D5 d(s)exp {Zj<7;WijSi5j}
20V 5 () exp {50, Wiysiss

* A pseudo-Bayesian posterior can be computed by fixing ¢(s). This
concentrates “posterior” mass on weights that are good at explaining the real
data and bad at explaining the corrupted data.

* We get a nice bias/variance trade-off and a huge computational savings!



Part II: Summary and Future Directions

e Tree-based approximations seem to work well, but exponentiating amplifies
any errors.

e We are comparing these methods (and hopefully others) on small BMs where
the exact solution can be computed.

e There is much future work in this area!

http://www.gatsby.ucl.ac.uk/ ~zoubin
http://www.variational-bayes.org/



Appendix



Cligue Potentials and Markov Networks

Definition: a clique is a fully connected subgraph (usually maximal).
C; will denote the set of variables in the " clique.

@ @

2. For each clique C; assign a non-negative function g;(C;) which measures
“compatibility”.

3. p(X1,...,Xn) = % I1,0:(Ci) where Z =37 T1;9:(C;) is normalizer

The graph G embodies the conditional independencies in p (i.e. G is a Markov
Field relative to p): If V' lies in all paths between X and Y in G, then X LY |V.



Hammersley—Clifford Theorem (1971)
Theorem: A probability function p formed by a normalized product of positive
functions on cligues of G is a Markov Field relative to GG.
Definition: The graph G is a Markov Field relative to p if it does not imply any
conditional independence relationships that are not true in p.

(We are usually interested in the minimal such graph.)

Proof: We need to show that the neighbors of X, ne(X) are a Markov Blanket
for X:

p(X Y, ) = [Lac) =5 TT s I %)

1 Xel; J:X¢C;
:%fl (X,ne(X)) fo(ne(X),Y) = %p(Xlne(X)) p(Y|ne(X))

This shows that: p(X,Y|ne(X)) = p(X|ne(X)) p(Y|ne(X)) & X LY |ne(X).



