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Motivation: UFL with cable capacities
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o Objective: Open some facilities | |
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cost: distance to nearest open | |
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o New twist: Clients connect to \ _
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bles. Service cost becomes
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Outline
-

Define CCFL: Capacitated cable facility location.
Lower bounds for CCFL.

Approximation algorithm for CCFL.

Define KCFL.: k-cable facility location.

Thoughts on approximating KCFL.
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Problem definition
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Problem definition
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with costs ¢;, and Cable capac-
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Install cables on edges, to sup-
port 1 unit of flow from each
client to some open facility.

Objective: Minimize total cost
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Problem definition

f e Capacitated Cable Facility Lo-

.

cation (CCFL):

Graph (metric), Edge weights
ce, Clients D C V, Faclilities F
with costs ¢;, and Cable capac-
ity w.

Goal: Open some facilities, and
Install cables on edges, to sup-
port 1 unit of flow from each
client to some open facility.

Objective: Minimize total cost
(facilities + cables).

.

CCFL: feasible solution
| Cable capacity = 3
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Special cases and past work

f e u = 1: UFL; PUFL = 1.92 [MYZ e —‘
02]. Others: [STA 97, JV 99, P
AGKMMP 01, JMS 02]. L
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Special cases and past work

f o u= 1. UFL; pyrr = 1.52 [MYZ o T
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Special cases and past work

f o u=1:UFL; pypr = 1.52 [MYZ o T
02]. Others: [STA 97, JV 99, |
AGKMMP 01, JMS 02]. | .

e u = oo. Steiner tree; pgr = 1.55 ./
[RZ 99]. Others: [TM 80, AKR \

95, Zel 95, HP 99].

e |F| = 1: Single sink single ca-
ble edge Installation; pgs = 3
[HRS 00]. Others: [AA 97, AZ

98, GKKRSS 01, GMM 01, Tal \
02]. NS
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Special cases and past work

f o u = 1. UFL; pypr = 1.52 [MYZ s T
02]. Others: [STA 97, JV 99,
AGKMMP 01, JMS 02].

e u = oo: Steiner tree; pgr = 1.55
[RZ 99]. Others: [TM 80, AKR \
95, Zel 95, HP 99].

e |F| = 1. Single sink single ca- =
ble edge Installation; pgs = 3 | |
[HRS 00]. Others: [AA 97, AZ
98, GKKRSS 01, GMM 01, Tal
02]. AN A

o CCFL: O(logn) [MMP 00], also
for KCFL. This paper: 3.07 | Cablecopadity = 3
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L_ower bound: Routing

f o New UFL instance: Scale edge e L T
Costs to ¢, = c./u.
'
o« OPT(UFL)<OPT(CCFL). ¢
3 o “

e Reason: In CCFL, each client ' o
Incurs service cost at least 1/u | ;'\i:
of the cost of its path to its facil- AN
ity. o .
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Lower bound: Connectivity

f o New Steiner tree instance: Add o T
root r, connect to each facility \
with edge cost ¢;. Terminals: .
DU qrj.

i} /.<
o
« OPT(ST) < OPT(CCFL). \
g ]
| O
e Reason: In CCFL, each client 3 . |
must have a connection to some . \
facility. \/o/' ?
Steiner tree
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Algorithm motivation

e N
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» Routing LB: Good for high de- S
mand, bad for low demand. 6 |
» Connectivity LB: Bad for high . .
demand, good for low demand.
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o How to combine them? .
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Algorithm motivation

.

Routing LB: Good for high de- /'
mand, bad for low demand. o
Connectivity LB: Bad for high \.

demand, good for low demand.
How to combine them?

Use Iideas from single sink \
edge Installation algorithm! ANy o

Single sink edge installation
@ Clients W Sink 1
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Algorithm description ... 1

f 1. Solve scaled UFL (¢, = c./u). e T
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Algorithm description ... 1

f 1. Solve scaled UFL (¢, = c./u).
2. Solve Steiner tree instance.

Steiner tree
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Algorithm description ... 1

f 1. Solve scaled UFL (¢, = ¢ /u). e T
2. Solve Steiner tree instance. \
3. Open facilities of both stages. /'
Install cables of Steiner tree o
stage. | \

This Is infeasible!
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Algorithm description ... 1

1. Solve scaled UFL (¢, = c./u).
2. Solve Steiner tree instance.

. Open facilities of both stages.
Install cables of Steiner tree
stage.

. Convert to feasible solution by
aggregating demand and in-
stalling new cables.

(Details coming up.)
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Algorithm description ... 2

f 4. Installing new cables to make . T

solution feasible: \

~Algorithm: Step 3. ‘
‘@ Clients B Open Facilities
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Algorithm description ... 2

f 4. Installing new cables to make
solution feasible:
For each tree In forest:

(a) Identify “lowest” node with

demand > .
Form “clump” of « nodes in

such a subtree.

Algorithm: Step 4(a).
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Algorithm description ... 2

f 4. Installing new cables to make s T

solution feasible: '\2

For each tree in forest: .

(a) Identify “lowest” node with O/
demand > w. .
Form “clump” of « nodes in / \. \‘;
such a subtree. L\ /-

| N

(b) In this “clump”, Install a
new cable to connect near- |
est client-facility pair. .

Algorithm: Step 4(b).
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Algorithm description ... 2

f 4. Installing new cables to make s T
solution feasible: \
For each tree In forest: .
(a) Identify “lowest” node with /
demand > w. °
Form “clump” of v nodes in /\

such a subtree. J =
(b) In this “clump”, install a

new cable to connect near- |
est client-facility pair. S

(c) Reroute flow appropriately. ‘\./\,/
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Performance analysis

o N

e Theorem [HRS 00]. Aggregation-and-rerouting
produces feasible solution.
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e Theorem [HRS 00]. Aggregation-and-rerouting
produces feasible solution.

o Faclility cost: Paid by the two lower bounds.

o Cables on Steiner tree: Paid by Steiner tree lower
bound.
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Performance analysis

-

Theorem [HRS 00]: Aggregation-and-rerouting
produces feasible solution.

Faclility cost: Paid by the two lower bounds.

Cables on Steiner tree: Paid by Steiner tree lower
bound.

New cables from “clumps”. Paid by routing (service)
cost component of UFL solution, since each client in
UFL solution incurs ¢/u service cost and each clump
has u clients.

|
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Performance analysis

-

e Theorem [HRS 00]. Aggregation-and-rerouting
produces feasible solution.

o Faclility cost: Paid by the two lower bounds.

o Cables on Steiner tree: Paid by Steiner tree lower
bound.

e New cables from “clumps”; Paid by routing (service)
cost component of UFL solution, since each client in
UFL solution incurs ¢/u service cost and each clump
has u clients.

e Theorem: The algorithmis a psr + pyrr, (= 3.07)
approximation for CCFL.

o |
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Thoughts

o N

o Natural IP formulation has good relaxation. Our
algorithm yields a gapst + gapyrr, (= 5) LP-rounding
approximation algorithm for CCFL.

o |
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Thoughts
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o Natural IP formulation has good relaxation. Our
algorithm yields a gapst + gapyrr, (= 5) LP-rounding
approximation algorithm for CCFL.

e Generalizes to non-uniform demands at clients. If
demand is splittable, performance ratio remains same
(= 3.07).

For unsplittable demand, the aggregate-and-reroute
step needs a little more work. Performance ratio is now

pstT + 2purrL (= 4.59).

o |

Integrating Facility Location and Network Design — p.12



-

o Natural IP formulation has good relaxation. Our

Thoughts
-

algorithm yields a gapst + gapyrr, (= 5) LP-rounding
approximation algorithm for CCFL.

Generalizes to non-uniform demands at clients. If
demand is splittable, performance ratio remains same
(= 3.07).

For unsplittable demand, the aggregate-and-reroute
step needs a little more work. Performance ratio is now

pstT + 2purrL (= 4.59).

No tight example known.
Lower bound on approximation ratio is 1.46, coming
from UFL.

|
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KCFL.: k-cable facility location
- S -

o Variant of CCFL: k cable types
to choose from. \

Depending on flow, one partic-
ular type of cable may be most ¢
economical. \

CCFL: feasible solution

Cable capacity = 3
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KCFL.: k-cable facility location
- S -

o Variant of CCFL: k cable types
to choose from. \

Depending on flow, one partic-

ular type of cable may be most o
economical. \

o Current status:
O(logn) due to [MMP 00],
O(k) due to [RS 02]. A \ "

KCFL: feasible solution

S |
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k-cable single sink edge installation

.

Single sink: |F| = 1.

O(1) approximation due to
[GMM 01].
Combinatorial, randomized al-
gorithm, using same structural
lower bounds (routing and con-
nectivity).

,,,,,,,,,,,,,,,,, -

k—cable edge installation
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k-cable single sink edge installation

.

Single sink: |F| = 1.

O(1) approximation due to
[GMM 01].
Combinatorial, randomized al-
gorithm, using same structural
lower bounds (routing and con-
nectivity).

Improved O(1) approximation
due to [Tal 02].
LP rounding, improves on O(k)
of [GKKRSS 01].

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffff N

)

- k~cable edge installation
0 Clients B Sink
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Thoughts on approximating KCFL
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e Open: O(1) for KCFL?
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o N

e Open: O(1) for KCFL?

o Extend [GMM 01]: yields O(k) [RS 02], with O(1) on
cable cost. O(k) is only due to facility costs.
Better algorithm / analysis may yield O(1).
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o Extend [GMM 01]: yields O(k) [RS 02], with O(1) on
cable cost. O(k) is only due to facility costs.
Better algorithm / analysis may yield O(1).

o Slight modification of LP of [Tal 02] yields formulation of
KCFL.

Open: Rounding or gap for LP.
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Thoughts on approximating KCFL

f e Open: O(1) for KCFL? T

o Extend [GMM 01]: yields O(k) [RS 02], with O(1) on
cable cost. O(k) is only due to facility costs.
Better algorithm / analysis may yield O(1).

o Slight modification of LP of [Tal 02] yields formulation of
KCFL.

Open: Rounding or gap for LP.
e Open: CCFL / KCFL with capacitated facilities.

o |
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