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\% Previous Results

factor reference technique(s)/running time
O(Inn.) Hochbaum greedy/O(n3)

3.16 Shmoys, Tardos, Aardal LP rounding

2.41 Guha, Khuller LP rounding, greedy augmentation
1.736 Chudak LP rounding

54 ¢ Korupolu, Plaxton, Rajaraman local search/O(n®log(n/e¢))

3 J., Vazirani primal-dual/O(n?logn)

1.853 Charikar, Guha primal-dual, greedy aug./0O(n3)
1.728 Charikar, Guha LP r., primal-dual, greedy aug.
1.861 Mahdian, Markakis, Saberi, Vazirani greedy/O(n?logn)

1.61 J., Mahdian, Saberi greedy/O(n3)

1.582 Sviridenko LP rounding

1.52 Mahdian, Ye, Zhang greedy, greedy augmentation/O(n3)

Lower bound: 1.463 (Guha, Khuller)
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Versatality of JV's algorithm

An o factor approximation algorithm:

F+C<alF*+C%

An LMP o factor approximation algorithm:

F+4+C < F*+ aC*

JV Algorithm is LMP 3 factor.

We present LMP 2 factor.
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\‘% LP Formulation
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@ Facility Location and Set Cover

A star consists of one facility and several cities.

Facility

Cities
The cost cg of a star S is the sum of the opening cost of the
facility and the connection costs between the facility and cities

in S.

Let R be the collection of all stars.

We want to cover all cities with sets in R.




\% Set Cover LP Formulation

set cover LP:
minimize > cszs
SeER
subjectto VjeC: > xzg>1
S:jeSs
VSeR: z¢g>0

dual:
maximize Zo‘j
j€eC
subject to VSeR: Y «a;<cg

jesnc
ViecC: (}jzio
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X JV Primal-Dual Algorithm
maximize ) «;
Jjec
subjectto VSeR: Y «a;<cg
JeSNC
ViEC: a; >0
Phase 1:

— Start at timet = 0. Set «; = 0 for every j.
(Think of «; as the budget of city j.)

— Increase «; for all unconnected cities j at the same rate
until some Star goes tight.
Pick the Star and freeze the budget of every city in it.

Phase 2: Clean-up phase.
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N Paradigm

Primal-Dual Algorithm
— Feasibility of the Dual is the God given paradigm.

— Cost of the Dual may not be the cost of the Primal.

— A proof is needed that the Primal is still bounded.

Greedy + Dual Fitting

— Cost of the Dual must be the cost of the Primal.
— Dual may not be feasible.

— A proof is needed that infeasibility of each constraint is still
bounded.
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Algorithm - Greedy

— Start at time ¢ = 0. Set a; = 0 for every j.

— Increase «; for all unconnected cities j at the same rate
until some Star goes tight.
Pick the Star.

— From this iteration onwards, ignore
the budget of every city and
the cost of the facility
init.

— Bounded within 1.86 factor. [Mahdian et. al. 2001]



Algorithm - Greedy -+ Local Improvement

— Start at time ¢ = 0. Set a; = 0 for every j.

— Increase «; for all unconnected cities j at the same rate
until some Star goes tight.
Pick the Star.

— From this iteration onwards, ignore
only the part of the budgets contributed towards the facility
cost, and
the cost of the facility.

— Bounded within 1.61 factor. [This paper]

— Is a 2 LMP approximation algorithm. [This paper]
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An Instance
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@ Properties

— 1.61 factor - analysis is simpler.

— 2 LMP factor - analysis is actually simple.

— Almost as versatile as JV Primal-Dual algorithm.
— Invariant under local improvements.

— Variant under scaling. A scaling invariant version is 1.52
approximation factor. [Mahdian et. al. 2002].



N Dual-Fitting

Recall the dual LP:
maximize )~ o
7€C
subject to VSeR: > «;<cg

jesnc
V3 eC: (szio

The a;'s computed by Algorithm 1 are not a feasible
dual solution.

However,

if we can prove that for every star S, Z o < ycg, then o /vy
is a feasible dual solution. jesnc
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An Optimization Problem

— Fix an algorithm. Find the worst instance of the problem.
— Find an instance with maximum possible ~.

— Computation of the maximum ~ is a mathematical program,
where variables represent an instance and a run of the algorithm.
In this case it is a linear program called Factor Revealing LP.

— Any feasible dual solution of the Factor Revealing LP is an
upper bound on #.
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@ Toy Problem—Set Cover

Given:
— set U of elements,

— subsets S1, 55, --+-Sm with costs C(S1),C(S5),---,C(Sm).

find:

— a collection of sets, with minimum cost, covering U.

Greedy Algorithm:
— Start at time ¢t = 0. Set a; = 0 for every element j.
— Increase «; for all uncovered elements j at the same rate
until some Set goes tight.
Pick the Set and ignore all its elements.

M



\X Approximation Factor
X0

— We want to find out how much is the following dual con-
straint violated.

Y o <C(9)
1€S
i.e., what is the maximum value of

DieS O
C(9)

— w.l.o.g assume C(S) =1, S={1,2,---,k}, and
a1 Sap < --- < o



% Observation

(k—i+1)a; <C>5) =1



@ Factor-Revealing LP

k
maximize > oy
i=1
subject to a; < oy 1<:<k—-1
(k—i14+1)o; <1 1 <1<k
a; > 0 1 <1<k



Dual of Factor-Revealing LP

k
minimize >y
i=1
subject to 21+ kyr > 1

zi—zi1+(k—i+1Dy; >1 2<i<k

A feasible solution: z; =0, y;,=1/(k—i+ 1).
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— A greedy algorithm as versatile as primal-dual algorithms.
— Some hardness results.

— Furthering a computer aided proof technique of Dual-Fitting
with Factor-Revealing LP.



