A New Greedy Approach for the Facility

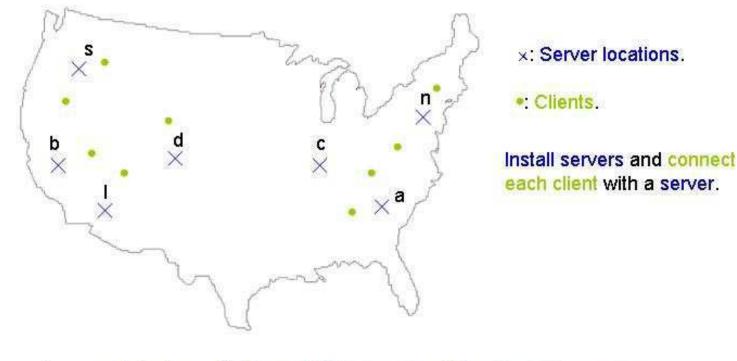
Location Problems

Kamal Jain Microsoft Research

Joint work with:

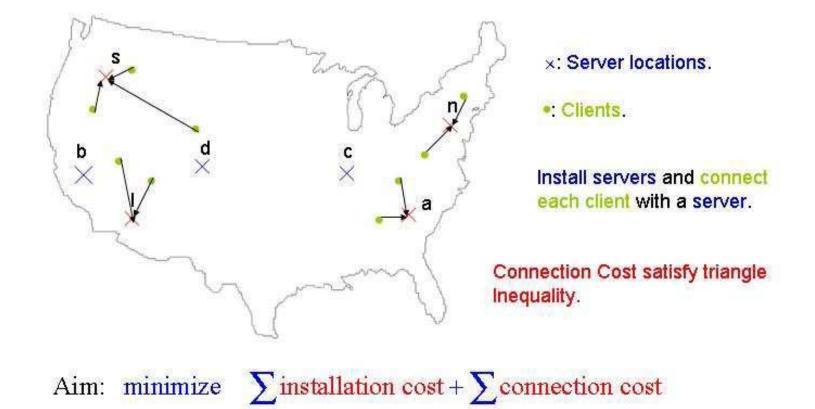
- A. Saberi (Georgia Tech)
- M. Mahdian (MIT)

Facility Location Problem



Aim: minimize \sum installation cost + \sum connection cost

Facility Location Problem



factor	reference	technique(s)/running time
$O(\ln n_c)$	Hochbaum	greedy/ $O(n^3)$
3.16	Shmoys, Tardos, Aardal	LP rounding
2.41	Guha, Khuller	LP rounding, greedy augmentation
1.736	Chudak	LP rounding
$5 + \epsilon$	Korupolu, Plaxton, Rajaraman	local search/ $O(n^6 \log(n/\epsilon))$
3	J., Vazirani	primal-dual/ $O(n^2 \log n)$
1.853	Charikar, Guha	primal-dual, greedy $aug./O(n^3)$
1.728	Charikar, Guha	LP r., primal-dual, greedy aug.
1.861	Mahdian, Markakis, Saberi, Vazirani	greedy/ $O(n^2 \log n)$
1.61	J., Mahdian, Saberi	greedy/ $O(n^3)$
1.582	Sviridenko	LP rounding
1.52	Mahdian, Ye, Zhang	greedy, greedy augmentation/ $O(n^3)$

Lower bound: 1.463 (Guha, Khuller)

An α factor approximation algorithm:

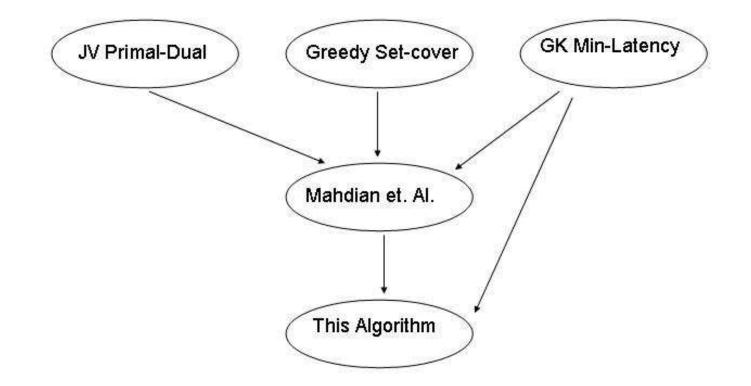
 $F + C \le \alpha(F^* + C^*)$

An LMP α factor approximation algorithm:

 $F + C \le F^* + \alpha C^*$

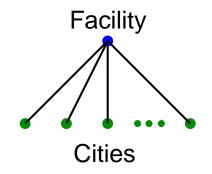
JV Algorithm is LMP 3 factor.

We present LMP 2 factor.



$\begin{array}{ll} \text{minimize} & \sum_{i \in \mathcal{F}, j \in \mathcal{C}} c_{ij} x_{ij} + \sum_{i \in \mathcal{F}} f_i y_i \\ \\ \text{subject to} & \sum_{i \in \mathcal{F}} x_{ij} \geq 1 & \forall j \in \mathcal{C} \\ & x_{ij} \leq y_i & \forall i \in \mathcal{F}, j \in \mathcal{C} \\ & x_{ij}, y_i \in \{0, 1\} & \forall i \in \mathcal{F}, j \in \mathcal{C} \end{array}$

A star consists of one facility and several cities.



The cost c_S of a star S is the sum of the opening cost of the facility and the connection costs between the facility and cities in S.

Let \mathcal{R} be the collection of all stars.

We want to cover all cities with sets in \mathcal{R} .

Set Cover LP Formulation

dual:

$$\begin{array}{ll} \text{maximize} & \sum_{j \in \mathcal{C}} \alpha_j \\ \text{subject to} & \forall S \in \mathcal{R} : \sum_{j \in S \cap \mathcal{C}} \alpha_j \leq c_S \\ & \forall j \in \mathcal{C} : \ \alpha_j \geq 0 \end{array}$$

5

JV Primal-Dual Algorithm

$$\begin{array}{ll} \text{maximize} & \sum_{j \in \mathcal{C}} \alpha_j \\ \text{subject to} & \forall S \in \mathcal{R} : \sum_{j \in S \cap \mathcal{C}} \alpha_j \leq c_S \\ & \forall j \in \mathcal{C} : \ \alpha_j \geq 0 \end{array}$$

Phase 1:

- Start at time t = 0. Set $\alpha_j = 0$ for every j. (Think of α_j as the *budget* of city j.)
- Increase α_j for all *unconnected* cities j at the same rate until some Star goes tight.

Pick the Star and freeze the budget of every city in it.

Phase 2: Clean-up phase.

Primal-Dual Algorithm

- Feasibility of the Dual is the God given paradigm.
- Cost of the Dual may not be the cost of the Primal.
- A proof is needed that the Primal is still bounded.

Greedy + Dual Fitting

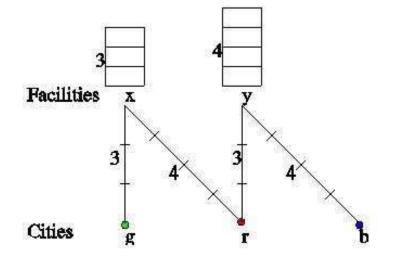
- Cost of the Dual must be the cost of the Primal.
- Dual may not be feasible.

 A proof is needed that infeasibility of each constraint is still bounded.

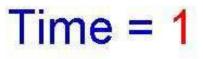
- Start at time t = 0. Set $\alpha_j = 0$ for every j.
 - Increase α_j for all *unconnected* cities j at the same rate until some Star goes tight. Pick the Star.
 - From this iteration onwards, ignore the budget of every city and the cost of the facility in it.
 - Bounded within 1.86 factor. [Mahdian et. al. 2001]

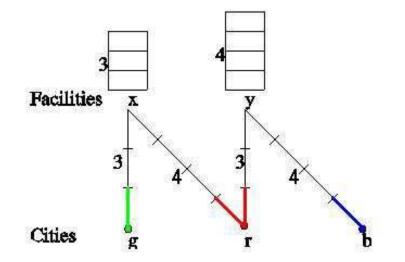
- Start at time t = 0. Set $\alpha_j = 0$ for every j.
 - Increase α_j for all *unconnected* cities j at the same rate until some Star goes tight. Pick the Star.
- From this iteration onwards, ignore only the part of the budgets contributed towards the facility cost, and
 - the cost of the facility.
 - Bounded within 1.61 factor. [This paper]
 - Is a 2 LMP approximation algorithm. [This paper]

An Instance

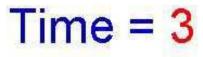


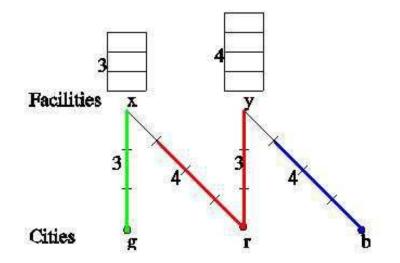
Time = 0



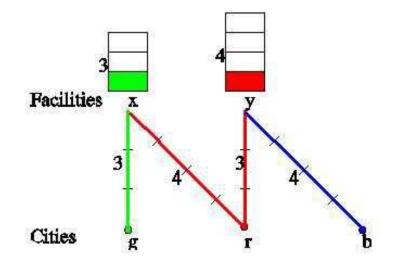


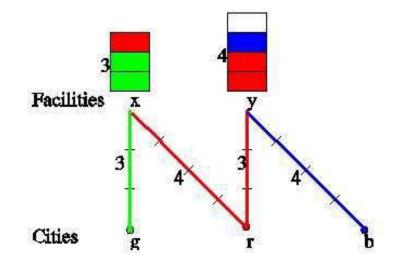
Cities start increasing their budgets.

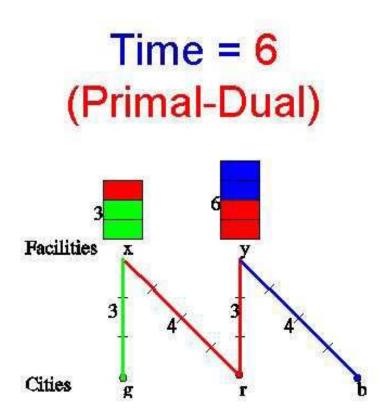


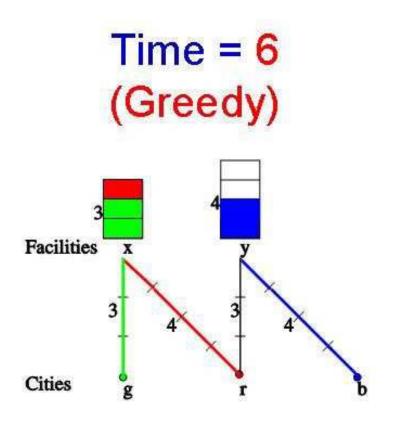




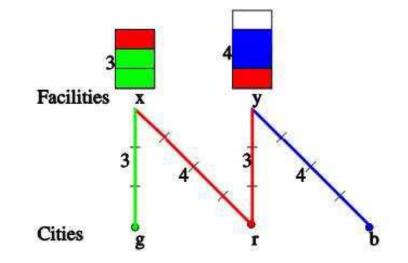








Time = 6 (Greedy + Local Improvement)



- 1.61 factor analysis is simpler.
- 2 LMP factor analysis is actually simple.
- Almost as versatile as JV Primal-Dual algorithm.
- Invariant under local improvements.
- Variant under scaling. A scaling invariant version is 1.52 approximation factor. [Mahdian et. al. 2002].

Recall the dual LP: maximize $\sum_{j \in C} \alpha_j$ subject to $\forall S \in \mathcal{R} : \sum_{\substack{j \in S \cap C \\ \forall j \in C}} \alpha_j \leq c_S$

The α_j 's computed by Algorithm 1 are not a feasible dual solution.

However,

if we can prove that for every star S, $\sum_{j \in S \cap C} \alpha_j \leq \gamma c_S$, then α_j / γ is a feasible dual solution.

- Fix an algorithm. Find the worst instance of the problem.
- Find an instance with maximum possible γ .

- Computation of the maximum γ is a mathematical program, where variables represent an instance and a run of the algorithm. In this case it is a linear program called *Factor Revealing LP*.

– Any feasible dual solution of the Factor Revealing LP is an upper bound on γ .

Toy Problem–Set Cover

Given:

- set U of *elements*,

- subsets S_1, S_2, \dots, S_m with costs $C(S_1), C(S_2), \dots, C(S_m)$.

find:

- a collection of *sets*, with minimum cost, covering U.

Greedy Algorithm:

- Start at time t = 0. Set $\alpha_j = 0$ for every element j.
- Increase α_j for all *uncovered* elements j at the same rate until some Set goes tight.

Pick the Set and ignore all its elements.

- We want to find out how much is the following dual constraint violated.

$$\sum_{i \in S} \alpha_i \le C(S)$$

i.e., what is the maximum value of

Approximation Factor

$$rac{\sum_{i\in S} lpha_i}{C(S)}$$

- w.l.o.g assume C(S) = 1, $S = \{1, 2, \dots, k\}$, and $\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_k$.

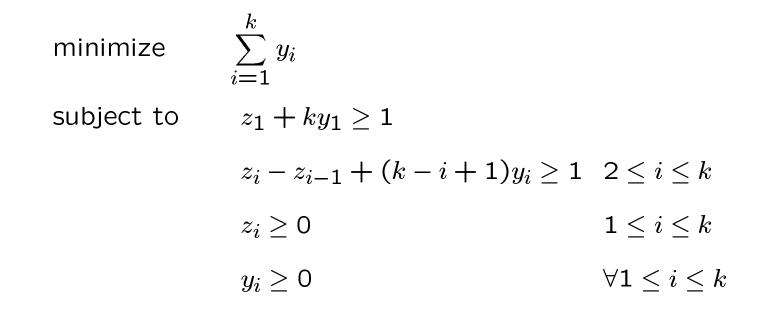
14

$(k-i+1)\alpha_i \le C(S) = 1$

$$\begin{array}{ll} \text{maximize} & \sum\limits_{i=1}^k \alpha_i \\ \text{subject to} & \alpha_i \leq \alpha_{i+1} & 1 \leq i \leq k-1 \\ & (k-i+1)\alpha_i \leq 1 & 1 \leq i \leq k \\ & \alpha_i \geq 0 & 1 \leq i \leq k \end{array}$$

(16)

Dual of Factor-Revealing LP



A feasible solution: $z_i = 0$, $y_i = 1/(k - i + 1)$.

- A greedy algorithm as versatile as primal-dual algorithms.
- Some hardness results.
- Furthering a computer aided proof technique of Dual-Fitting with Factor-Revealing LP.

