Applying facility location to clustering a large dataset

Moses Charikar
Princeton University

Joint work with
Liadan O’Callaghan
and
Rina Panigrahy
Sources of Massive Data Sets

- World Wide Web
- Traffic on the internet
- Telephone records
- Multimedia data
- Customer transactions
- Astronomical data
New limitations and paradigms

- Data too large to fit in main memory
- Linear or near linear time algorithms
- Random access to data is infeasible

Sketching model
- Process compact sketches instead of original data

Streaming model
- One or more passes over data using small storage space
Streaming model

- Algorithm must process data by making one or more passes over it
- Size of data is massive compared to memory size
- Random access not feasible
- What problems can be solved?
- Can we get approximate answers to interesting questions?
Clustering

- **Given**: very large collection of objects
 - Objects could be web pages, news stories, images, customer profiles, etc

- **Objective**: cluster the objects
 - Disjoint partition into clusters
 - Similar/related objects in the same cluster
 - Dissimilar objects in different clusters
Clustering objective functions

- Typically, associate each cluster with cluster center (representative)
- **Goal**: partition into k clusters
- Equivalently, find k centers and assign points to centers
- Clustering is good if points are close to cluster centers
- Common clustering objectives measure distances of points to cluster centers
Clustering objective functions

- **Maximum cluster radius** (*k-center*)
- **Sum of distances of points to cluster centers** (*k-median*)
- **Sum of cluster radii** (*k-sumradii*)
Offline vs. Streaming

- **Offline model:**
 - Find good clustering solution in polynomial time
 - Arbitrary access to data

- **Streaming model:**
 - Produce implicit description of clusters (i.e. cluster centers + additional info) in one pass, using small amount of space.
Input representation

- Measure space requirement in terms of number of objects stored
- What if objects themselves are large?
 - Schemes to represent objects compactly
 - Distance of objects can be estimated from their compact representations
Talk outline

- Streaming algorithms for clustering
- K-center
- K-median
- Clustering formulations with outliers
K-center

- Given collection of points
- Pick k cluster centers
- Assign each point to closest center
- Minimize maximum point-center distance

Offline: 2-approximation

[Hochbaum, Shmoys] [Dyer, Frieze] [Gonzalez]
Offline algorithm

- Suppose optimal radius is OPT
- Process points sequentially
- Maintain set of centers S
 (Initially $S = \{\text{first point}\}$)
- Consider next point p
 - If p is within distance $2OPT$ of some center in S, add to corresponding cluster
 - Else, add p as new center in S
Analysis

Assuming we know OPT

Guarantee on solution cost

- Radius of each cluster is at most $2OPT$

Guarantee on number of centers

- Distance between points in S is $>2OPT$
- Every point in S must be in a distinct cluster in optimal solution
- S can have at most k points
Streaming algorithm

- Start with very low guess on OPT
- Run \textit{offline} algorithm
- If we get \(k \) centers, guess was too low
- Increase guess, merge clusters

- Algorithm runs in phases
- \(r_i : \) guess used in phase \(i \)
- \(r_{i+1} = 2 \, r_i \)
Phase transitions

- **End of phase** i
 - $k+1$ points with pairwise distance $> 2r_i$
 - Each cluster of radius $< 4r_i$
- **Beginning of phase** $i+1$
 - $r_{i+1} = 2r_i$
 - Pick arbitrary center c, merge clusters whose center within $2r_{i+1}$ from c (repeat)
- **New point** p
 - Add to cluster if within $2r_{i+1}$ from center
 - Else, add p to set of centers (create new cluster)
Radius of new clusters $\leq 2r_{i+1} + 4r_i = 4r_{i+1}$
Approximation guarantee

- Clusters in phase $i+1$ have radius $< 4r_{i+1}$
- $\text{OPT} > r_i$
- Approximation ratio $= 4r_{i+1}/r_i = 8$
- Note: storage required is k

- Ratio can be improved
 - More sophisticated algorithm
 - Randomization

- [C, Chekuri, Feder, Motwani]
Given collection of points
Pick \(k \) cluster centers
Assign each point to closest center
Minimize sum of point-center distances

Offline: \(3+\varepsilon \) approximation \([\text{Arya, etal}]\)
LP rounding, primal dual, local search
Previous streaming algorithm

- [Guha, Mishra, Motwani, O’Callaghan]
- Storage: \(n^\epsilon \), approximation ratio \(2^{O(1/\epsilon)} \)
- Apply offline algorithm to cluster blocks of \(n^\epsilon \) points
- Clustering proceeds in levels
- Centers for level \(i \) form input for level \(i+1 \)
New approach

- [C, O’Callaghan, Panigrahy]
- Idea: mimic k-center approach
- Suppose we knew OPT
- Can we maintain solution with k centers and cost $O(OPT)$ in streaming fashion?
Facility location

- Given collection of points, facility cost f
- Find subset S of centers
- Assign each point to closest center
- Cost = sum of point-cluster distances $+ f |S|$

- Contrast with k-median
- (sort of) Lagrangian relaxation
Using facility location for k-median

- Given k-median instance with optimal value OPT
 - Produce facility location instance by setting facility cost $f = OPT/k$
 - Optimal for facility location $\leq 2 \cdot OPT$
- Given β approx algorithm for fac locn
 - Fac locn solution of cost $\leq 2\beta \cdot OPT$
- Interpret as k-median solution
 - Cost $\leq 2\beta \cdot OPT$, #centers $\leq 2\beta \cdot k$
Online algorithm for facility location

[Meyerson]

- f = facility cost
- For each point p
- $\delta = \text{distance of } p \text{ to closest center}$
- Open center at p with probability δ/f

Theorem: Expected cost of solution $= O(\log n) \text{ OPT}$
Using the online algorithm

- Suppose we have lower bound \(L \) on \(\text{OPT} \)
- We set \(f = \frac{L}{k(1+\log n)} \)
- Run online facility location algorithm (Online-Fac-Locn)

Lemma:
- Expected number of centers produced \(\leq k(1+\log n)(1+4\text{OPT}/L) \)
- Expected cost \(\leq L+4\text{OPT} \)
- Procedure to check if \(\text{OPT} \) much larger than \(L \)
Updating the lower bound

- With probability at least $\frac{1}{2}$, Online-Fac-Locn produces solution with
 - Cost $\leq 4(L+4OPT)$
 - #centers $\leq 4k(1+\log n)(1+4OPT/L)$

- Run $O(\log n)$ invocations of this in parallel
- Invocation fails if cost exceeds bound, or number of centers exceed bound $O(k \log n)$
- If all invocations fail, update lower bound L
Changing phases

- Increase lower bound to $\beta \cdot L$
- Pick solution produced by invocation that finished last
- Feed (weighted) centers as input to next phase
- Finally, $O(k \log n)$ centers with cost $O(OPT)$
- Run offline algorithm on weighted centers to get k centers with cost $O(OPT)$
- **Note:** storage = $O(k \log^2 n)$ points
Many little Details

- Algorithm succeeds with high probability
 - When a phase ends, $OPT > \beta \cdot L$ w.h.p
 - During a phase, solution cost $< \gamma \cdot L$ w.h.p.
 - β and γ chosen appropriately to maintain invariants
 - avoid multiplicative increase in approx ratio

- At phase change, need good lower bound on OPT
 - solve offline k-median on weighted medians and one new point.
Clustering with outliers

- Can exclude ϵ fraction of the points
- Find solution to optimize clustering objective on remaining $(1- \epsilon)$ fraction of point set

Offline: [C, Khuller, Mount, Narasimhan]
Streaming: [C, O’Callaghan, Panigrahy]
Outliers analysis ideas

- **Algorithm**: Sample data set and apply offline clustering algorithm to sample

- **Analysis**: show that sample is representative of data set, i.e.
 - If particular solution excludes ϵ fraction of points in the sample
 - Solution scaled up to entire data set does not exclude much more than ϵ fraction of points