
Facility Location with
Nonuniform Hard

Capacities

Martin Pál Éva Tardos Tom Wexler
Cornell University

1

Metric Facility Location

F is a set of facilities.
D is a set of clients.

cij is the distance between any i
and j in D ∪ F.

Facility i in F has cost fi.

client

facility5
4

2
3

2

Problem Statement

We need to:

1) Pick a set S of facilities to open.

2) Assign every client to an open
facility (a facility in S).

Goal: Minimize cost of S + distances.

client

facility5
4

2
3

opened
facility

3

More Formally

Facility cost cf(S): sum of fi over all i
 in S.

Service cost cs(S): sum of distances
 from clients to
 assigned facilities.

Goal: Minimize cf(S) + cs(S).

client

facility5
4

2
3

opened
facility

4

Hard Capacities
Every facility i has a capacity ui.
(how many clients i can serve)

Soft Capacities: can open k copies
of facility i and serve k·ui clients.

Hard Capacities: can’t open multiple
copies of any facility.

Note: with hard capacities, there
may be no solution.

5

Previous Results I
Techniques Used for Fac. Loc.:

 LP rounding

Primal-dual algorithms

Chudak & Shmoys ‘99, Jain & Vazirani ‘99:

LP techniques give c-approx. for
soft capacities.

Problem: Known LPs have large
integrality gap for hard capacities.

6

Previous Results II
Techniques Used for Fac. Loc.:

Local search

Korupolu et al ‘98, Chudak & Williamson ‘99:
Local search gives c-approx. for
uniform, hard capacities.

Arya et al ‘01:
Local search gives c-approx. for
nonuniform, soft capacities.

Our Result:

Local search gives c-approx. for
nonuniform, hard capacities.

7

Local Search

1) Start with any feasible solution.

2) Improve solution with
“local operations”.

3) Stop when there are no remaining
operations that lower the cost.

Well, almost…

 …we want to finish in poly-time:

Each operation is required to lower
cost by a factor of 1/poly(n,ε).

8

Operation 1 (of 3): add

1) add(s) – Open facility s.

If our solution opened S before,
add(s) means we open S ∪ {s} now.

Given S, where do we send clients?

ï Without capacities, we just assign
clients the the nearest open facility.

ï With capacities, we can still get
optimum by solving a min cost flow.

9

Operation 2: open

2) open(s,T) – Open facility s, send
clients from T to s, and close T.

s

s
If we close t, we
are only allowed to
send t’s clients to s.

before

after Capacity of s
 ≥
of clients
served by T.

10

Operation 3: close

3) close(s,T) – Open facilities T,
send clients from s to T, close s.

s

s
Capacity of T
 ≥
of clients
served by s.

before

after

11

Can We Find Operations?

Too many operations like open(s,T)
and close(s,T) to consider all!

Can we get find the best one?

Not quite, but close enough.

Plan: For each facility s, generate a
good set T for the open operation.

Likewise for close.

12

Good Operations

Want to open s, need to pick T.

Idea: t has demand & benefit.

A knapsack problem! (have scheme)

s
t

Value(t) = ft + reassignment costs.

Size(t) = # clients assigned to t.

max. ∑t є T Value(t)

s. t. ∑t є T Size(t) ≤ cap.(s).

i
open(s, T)

13

Service Cost

What can we say about the output
of our algorithm?

Thm: [Korupolu et al]

If no add(s) op. improves solution S,

 cs(S) ≤ cs(SOPT) + cf(SOPT).

So service cost is low. What about
facility cost?

14

Facility Cost

Bounding cf(S):

Local opt. 0 ≤ operation costs.
 (for any operation)

Every operation gives a bound:

Consider close(s, T).

cf(s) ≤ cf(T) + ∆

benefit of closing s

cost of opening T

change in cost of
shipping to T

15

The Plan
Idea: Pick some set of operations.

Each gives cf(T) ≤ cf(T’) + ∆ for some
sets T and T’.

 (closed) (opened)

Pick operations so that

ï each s in S is closed exactly once.

ï each s in SOPT is opened ≤ k times.

ï reassignment costs are small.

16

The Exchange Graph

Operations should depend on SOPT.

S — SOPT

SOPT

cij

Flow in = demand served by S

Flow out ≤ capacity of facilities in SOPT

We want: swap(SOPT, S — SOPT).

We don’t have such an operation.

17

Looking For Operations

S — SOPT

SOPT

cij

Flow in = demand served by S

Flow out ≤ capacity of facilities

y = flow of clients from S to SOPT.

cost(y) ≤ cs(S) + cs(SOPT)

Cost of swap(SOPT, S — SOPT) ≤

cost(y) + cf(SOPT) - cf(S).
18

What is the Flow?

Conveniently, the flow is a tree!
 (or rather a forest… just augment cycles)

S — SOPT

SOPT

How do we get operations from this?

Remember, we will use inqualities like
cf(T) ≤ cf(T’) + ∆.

Since flow is cheap, ∆ is small.
19

First Attempt

Just use close(s,T), picking T to be
the neighbors of s in the tree.

Problem: Expensive facilities in SOPT
may be opened many times.

S — SOPT

SOPT

20

Instead…

Consider subtrees of depth 2.

r

Each node needs to be closed.

Partition these nodes into 3 sets.
We’ll handle each set separately.

S — SOPT

SOPT

21

Heavy Nodes

Heavy Nodes: nodes responsible

for > ½ the clients sent to

Note: There can be only one.

r

Only 1, so close it & open neighbors.

 (i.e. use the naïve approach)

r

S — SOPT

SOPT

22

Light Dominating

Light Dominating: nodes that

send ≥ ½ their clients up to
r

r

S — SOPT

SOPT

Worst case,this doubles ’s
capacity: Split into a few operations.

r

r

23

Last Case

Light Nondominating: nodes that

send ≥ ½ their clients down.

Order these by # of clients sent up.

To close facility i open: C(i), C(i+1)

r

S — SOPT

SOPT

r

24

Last Case

Light Nondominating: nodes that

send ≥ ½ their clients down.
r

S — SOPT

SOPT

Order these by # of clients sent up.

To close facility i in LN, open:

The children of i

The children of i+1

25

Last Case (cont’)

r

S — SOPT

SOPT

For the last LN node, we open the
root instead.

For LN in total, is opened once,
and the bottom facilities are opened
at most twice.

r

26

In Total

For each subtree,

 is opened at most 4 times,

 s are opened at most 2 times.

Every facility in SOPT is a root of 1
subtree and a child in 1 subtree.

Altogether

ï Every node in S is closed

ï Every node is SOPT is opened at
most 6 times.

r

27

Result

Thm: Our local search algorithm
gives a 9-approx. for facility location
with hard, nonuniform capacities.

Note 1: Actually a (9 + є)-approx.

Note 2: Scaling lowers it to 8.53…

Note 3: At best, algorithm is a
 4-approx.

28

LP Integrality Gap

u=100
f=100

u=99
f=1

u=1
f=99

d=100

 Why not use LPs for this problem?

The LP solution fully opens the green
facility and opens 1/100th of the red
facility, thus paying a facility cost of 2.

Any integer solution pays 100.

29

Lower Bound

How much better might our alg. be?

Thm: Alg. is at best a 4-approx.

c:6
u:2

c:6
u:2

c:6
u:2

c:3
u:3

c:0
u:1

c:0
u:1

c:0
u:1

0 0 0

0 0 0

2

1

2

1 1

2

30

The close(s, T) Operation

s

Knapsack? value(t) isn’t well defined:
Which clients should t serve?

Solution: Use ∆ ≠ to get an upper
estimate for rerouting cost.

To send demand to t, first ship it to
s, then to t.

Now value(t) = cap.(t) * dist.(s, t)
 size(t) = cap.(t)
 (now we have a covering knapsack problem)

?

?

?

t

31

