Facility Location with
Nonuniform Hard
Capacities

Martin P4l Eva Tardos Tom Wexler
Cornell University

Metric Facility Location

F is a set of facilities.
D is a set of clients.

c; is the distance between any i
and jinD O F.

Facility i in F has cost f,.

® o ©)
® @ . @ Qfaally

© client
@ o @ O ®

Problem Statement

We need to:
1) Pick a set S of facilities to open.

2) Assign every client to an open
facility (a facility in S).

Goal: Minimize cost of S + distances.

‘ opened
facility
Q facility

O client

More Formally

Facility cost ¢c,(S): sum of f, over all i
in S.

Service cost ¢, (S): sum of distances

from clients to
assighed facilities.

Goal: Minimize c,(S) + c(S).

‘ opened
facility
Q facility

O client

Hard Capacities

Every facility i has a u..
(how many clients i can serve)

. can open k copies
of facility i and serve k-u, clients.

. can't open multiple
copies of any facility.

Note: with hard capacities, there
may be no solution.

Previous Results I

Techniques Used for Fac. Loc.:
LP rounding
Primal-dual algorithms

Chudak & Shmoys '99, Jain & Vazirani '99:

LP techniques give c-approx. for
soft capacities.

Problem: Known LPs have large
integrality gap for hard capacities.

Previous Results IT

Techniques Used for Fac. Loc.:

Local search

Korupolu et al '98, Chudak & Williamson '99:
Local search gives c-approx. for
uniform, hard capacities.

Arya et al '01:
Local search gives c-approx. for
nonuniform, soft capacities.

Our Result:

Local search gives c-approx. for
nonuniform, hard capacities.

7

Local Search

1) Start with any feasible solution.

2) Improve solution with

n

3) Stop when there are no remaining
operations that lower the cost.

..we want to finish in poly-time:

Each operation is required to lower
cost by a factor of 1/poly(n,g).

Operation 1 (of 3): add
1) s) - Open facility s.

If our solution opened S before,
s) means we open S [J {s} now.

Given S, where do we send clients?

I Without capacities, we just assign
clients the the nearest open facility.

I With capacities, we can still get
optimum by solving a min cost flow.

Operation 2: open

2) s, T) - Open facility s, send
clients from T to s, and close T.

before

/O "\Q
Q/ If we close t, we
are only allowed to

send t's clients to s.

after % Capacity of s

o _° >
4/0 # of clients
® 5 served by T.

Operation 3: close

3) close(s, T) - Open facilities T,
send clients from s to T, close s.

before
,g%
Capacity of T
O ¢ ,
of clients
served by s.

after

P
J.P

Q-

I

Can We Find Operations?

Too many operations like s, T
and s, T) to consider alll

Can we get find the best one?

Not quite, but close enough.

Plan: For each facility s, generate a
good set T for the operation.

Likewise for

Good Operations

o O
7O

Want to open s, need to pick T.
Idea: t has demand & benefit.
A knapsack problem! (have scheme)

Value(t) = f, + reassignment costs.

Size(t) = # clients assigned to t.

max. 2...Value(t)
s.t. 2,.;Size(t) < cap.(s).

Service Cost

What can we say about the output
of our algorithm?

. [Korupolu et al]
If no s) op. improves solution S,
c.(S) ¢ ¢ (S°T) + c(S°).

So service cost is low. What about
facility cost?

Facility Cost

Bounding c¢.(S):

Local opt. "> 0« operation costs.
(for any operation)
Every operation gives a bound:
Consider s, T).
c(s)<c(T)+ A
e "\
change in cost of

cost of opening T

15

The Plan

Idea: Pick some set of operations.

Each gives c.(T) < c(T) + A for some

sets Tand T.
/ o\

Pick operations so that
| each s in S is closed exactly once.
| each s in ST is opened ¢ k times.

I reassignment costs are small.

The Exchange Graph

Operations should depend on S°°T,

Flow in = demand served by S

S —_— SOPT

SOPT

v v v
Flow out < capacity of facilities in SO°T

We want: swap(S°°T, S — SOFT),

We don't have such an operation.

17

Looking For Operations

Flow in = demand served by S

S —_— SOPT

SOPT

v v v
Flow out < capacity of facilities

y = flow of clients from S to S°°T,
cost(y) < c.(S) + ¢ (S°PT)

Cost of swap(S°°T, S — SO°T) <
cost(y) + c(SOT) - c.(S).

What is the Flow?

Conveniently, the flow is a treel

(or rather a forest... just augment cycles)

./Q\R @ s sorm

coo0 o

How do we get operations from this?

Remember, we will use inqualities like
c(T) < c(T) + A

Since flow is cheap, A is small.

19

First Attempt

Just use s, T), picking T to be
the neighbors of s in the tree.

f— S <
\

\

\

* o g
‘:\fﬂ\\ ®s-s

SOPT

® 0\} ‘i/

Problem: Expensive facilities in SO°T
may be opened many times.

Instead...

Consider subtrees of depth 2.

0/ .X @ 5 soer

SOPT

Each . node needs to be closed.

Partition these nodes into 3 sets.
We'll handle each set separately.

Heavy Nodes

. @ nodes responsible

for > 3 the clients sent to

r

Note: There can be only one.

e @%

@ s sort

SOPT

Only 1, so close it & open neighbors.

(i.e. use the ndive approach)

Light Dominating

; . nodes that

send > 3 their clients up to

r

r

-0

S —_— SOPT

SOPT

2P QRN

Worst case,this doubles | *

]

S

capacity: Split into a few operations.

Last Case
; . nodes that

send > 3 their clients down.

o0 o oo
SOPT

Order these by # of clients sent up.
To close facility i open: C(i), C(i+1)

r

Lol

Last Case
; . nodes that

send > 3 their clients down.

r

coo s o

SOPT

Order these by # of clients sent up.
To close facility i in LN, open:

The children of i

The children of i+1

Last Case (cont’)

r
w Q- -
SOPT

For the last LN node, we open the
root instead.

For LN in total, "] is opened once,
and the bottom facilities are opened
at most twice.

In Total

For each subtree,

r | is opened at most 4 times,

s are opened at most 2 times.

Every facility in S°T is a root of 1
subtree and a child in 1 subtree.

Altogether
| Every node in S is closed

| Every node is S°7 is opened at
most 6 times.

27

Result

: Our local search algorithm
gives a 9-approx. for facility location
with hard, nonuniform capacities.

Note 1: Actually a (9 + €)-approx.

Note 2: Scaling lowers it to 8.53...

Note 3: At best, algorithm is a
4-approx.

LP Integrality Gap

Why not use LPs for this problem?

d=100Q

The LP solution fully opens the green
facility and opens 1/100th of the red
facility, thus paying a facility cost of 2.

Any integer solution pays 100.

29

Lower Bound

How much better might our alg. be?

. Alg. is at best a 4-approx.

c:3
u:3
1 1
1
A
2 2 2

c:6 c:6 c:6
u:2 QD u:2
0] 0] 0]
A A A
0] 0] 0]
c:0 c:0 c:0

u:l u:l u:l

30

The close(s, T) Operation

?GD‘?/% O e

Knapsack? value(t) isn't well defined:
Which clients should t serve?

Solution: Use A # to get an upper
estimate for rerouting cost.

To send demand to 1, first ship it to
s, then to t.

Now value(t) = cap.(t) * dist.(s, 1)
size(t) = cap.(t)

(now we have a covering knapsack problem)

