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Metric Facility Location

F is a set of facilities.
D is a set of clients.

cij is the distance between any i 
and j in D ∪  F.

Facility i in F has cost fi. 
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Problem Statement

We need to:

1) Pick a set S of facilities to open. 

2) Assign every client to an open 
facility (a facility in S). 

Goal: Minimize cost of S + distances.
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More Formally

Facility cost cf(S): sum of fi over all i 
    in S. 

Service cost cs(S): sum of distances 
    from clients to 
    assigned facilities.

Goal:   Minimize cf(S) + cs(S).
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Hard Capacities
Every facility i has a capacity ui. 
(how many clients i can serve)

Soft Capacities: can open k copies 
of facility i and serve k·ui clients.

Hard Capacities: can’t open multiple 
copies of any facility.

  

Note: with hard capacities, there 
may be no solution.
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Previous Results I
Techniques Used for Fac. Loc.: 

 LP rounding 

Primal-dual algorithms

 
Chudak & Shmoys ‘99, Jain & Vazirani ‘99:

LP techniques give c-approx. for  
soft capacities.

Problem: Known LPs have large 
integrality gap for hard capacities.
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Previous Results II
Techniques Used for Fac. Loc.: 

Local search

Korupolu et al ‘98, Chudak & Williamson ‘99: 
Local search gives c-approx. for 
uniform, hard capacities.

Arya et al ‘01:          
Local search gives c-approx. for 
nonuniform, soft capacities.

Our Result: 

Local search gives c-approx. for 
nonuniform, hard capacities.
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Local Search

1) Start with any feasible solution.

2) Improve solution with 
“local operations”.

3) Stop when there are no remaining 
operations that lower the cost.

Well, almost…

   …we want to finish in poly-time:  

Each operation is required to lower 
cost by a factor of 1/poly(n,ε).
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Operation 1 (of 3): add

1) add(s) – Open facility s.

If our solution opened S before, 
add(s) means we open S ∪  {s} now.

Given S, where do we send clients?  

ï Without capacities, we just assign 
clients the the nearest open facility.

ï With capacities, we can still get  
optimum by solving a min cost flow.  
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Operation 2: open

2) open(s,T) – Open facility s, send 
clients from T to s, and close T.

s

s
If we close t, we 
are only allowed to 
send t’s clients to s.

before

after Capacity of s  
      ≥       
# of clients 
served by T.
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Operation 3: close

3) close(s,T) – Open facilities T, 
send clients from s to T, close s.

s

s
Capacity of T 
   ≥       
# of clients 
served by s.

before

after
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Can We Find Operations?

Too many operations like open(s,T) 
and close(s,T) to consider all!

Can we get find the best one?

Not quite, but close enough.

Plan:  For each facility s, generate a 
good set T for the open operation.

Likewise for close.  

12



Good Operations

Want to open s, need to pick T.

Idea: t has demand & benefit.

A knapsack problem!  (have scheme)

s
t

Value(t) = ft + reassignment costs.

Size(t) = # clients assigned to t.  

max. ∑t є T Value(t)

s. t. ∑t є T Size(t) ≤ cap.(s).

i
open(s, T)
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Service Cost

What can we say about the output 
of our algorithm?

Thm: [Korupolu et al]

If no add(s) op. improves solution S, 

     cs(S)  ≤  cs(SOPT)  +  cf(SOPT).

So service cost is low.  What about 
facility cost?
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Facility Cost

Bounding cf(S):

Local opt.       0 ≤ operation costs.
                          (for any operation)

Every operation gives a bound:

Consider close(s, T).

cf(s) ≤ cf(T) + ∆ 

benefit of closing s

cost of opening T

change in cost of 
shipping to T
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The Plan
Idea: Pick some set of operations.

Each gives cf(T) ≤ cf(T’) + ∆ for some 
sets T and T’.

 (closed)         (opened)

Pick operations so that

ï each s in S is closed exactly once.

ï each s in SOPT is opened ≤ k times.

ï reassignment costs are small.
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The Exchange Graph

Operations should depend on SOPT.

S — SOPT

SOPT

cij

Flow in = demand served by S

Flow out ≤ capacity of facilities in SOPT

We want: swap(SOPT, S — SOPT).

We don’t have such an operation.
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Looking For Operations

S — SOPT

SOPT

cij

Flow in = demand served by S

Flow out ≤ capacity of facilities

y = flow of clients from S to SOPT.

cost(y) ≤ cs(S) + cs(SOPT)

Cost of swap(SOPT, S — SOPT) ≤ 

cost(y) + cf(SOPT) - cf(S).
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What is the Flow?

Conveniently, the flow is a tree!
 (or rather a forest… just augment cycles)

S — SOPT

SOPT

How do we get operations from this?

Remember, we will use inqualities like 
cf(T) ≤ cf(T’) + ∆.

Since flow is cheap, ∆ is small. 
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First Attempt

Just use close(s,T), picking T to be 
the neighbors of s in the tree.

Problem: Expensive facilities in SOPT 
may be opened many times.  

S — SOPT

SOPT
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Instead…

Consider subtrees of depth 2.

r

Each       node needs to be closed.

Partition these nodes into 3 sets.  
We’ll handle each set separately.

S — SOPT

SOPT
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Heavy Nodes

Heavy Nodes:       nodes responsible

for > ½ the clients sent to

Note: There can be only one. 

r

Only 1, so close it & open neighbors. 

    (i.e. use the naïve approach) 

r

S — SOPT

SOPT
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Light Dominating

Light Dominating:       nodes that 

send ≥ ½ their clients up to
r

r

S — SOPT

SOPT

Worst case,this doubles       ’s 
capacity:  Split into a few operations.

r

r
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Last Case

Light Nondominating:       nodes that 

send ≥ ½ their clients down.

Order these by # of clients sent up.

To close facility i open: C(i), C(i+1)

r

S — SOPT

SOPT

r
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Last Case

Light Nondominating:       nodes that 

send ≥ ½ their clients down.
r

S — SOPT

SOPT

Order these by # of clients sent up.

To close facility i in LN, open:

The children of i

The children of i+1

25



Last Case (cont’)

r

S — SOPT

SOPT

For the last LN node, we open the 
root instead.

For LN in total,       is opened once, 
and the bottom facilities are opened 
at most twice.

r
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In Total

For each subtree,

      is opened at most 4 times,

     s are opened at most 2 times.

Every facility in SOPT is a root of 1 
subtree and a child in 1 subtree.

Altogether

ï Every node in S is closed

ï Every node is SOPT is opened at     
most 6 times.

r
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Result

Thm: Our local search algorithm 
gives a 9-approx. for facility location 
with hard, nonuniform capacities.

Note 1: Actually a (9 + є)-approx.

Note 2: Scaling lowers it to 8.53…

Note 3: At best, algorithm is a  
    4-approx.
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LP Integrality Gap
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    Why not use LPs for this problem?

The LP solution fully opens the green 
facility and opens 1/100th of the red 
facility, thus paying a facility cost of 2.

Any integer solution pays 100.  
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Lower Bound
       
How much better might our alg. be?

Thm: Alg. is at best a 4-approx.
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The close(s, T) Operation

s

Knapsack? value(t) isn’t well defined: 
Which clients should t serve?

Solution: Use ∆ ≠ to get an upper 
estimate for rerouting cost.  

To send demand to t, first ship it to 
s, then to t. 

Now value(t) = cap.(t) * dist.(s, t)       
    size(t) = cap.(t)     
     (now we have a covering knapsack problem)

?

?

?

t
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