
Approximation Algorithms for Data
Placement on Parallel Disks

Srinivas Kashyap
Department of Computer Science

University of Maryland, College Park
raaghav@cs.umd.edu

26th March 2003

Srinivas Kashyap 26th March 2003

The Problem

• Given:

� M data items. ith data item has size si, demand li.
� N disks. Each disk has storage capacity K and load

capacity L.

• Goal: Find a placement of data items on disks and
an assignment of clients to disks to maximize total
number of clients served.

1

Srinivas Kashyap 26th March 2003

Example (k=2), Optimal Assigment

L=80 L=80

#1 (50) #1 (50)

#3 (30)#2 (30)

Item #1: Size = 1, Load = 100
Item #2: Size = 1, Load = 30
Item #3: Size = 1, Load = 30

Fraction Packed = 1

2

Srinivas Kashyap 26th March 2003

Example (k=2), Non-Optimal Assignment

L=80 L=80

#3 (30)

Item #3: Size = 1, Load = 30

#1 (80)

Item #1: Size = 1, Load = 100

#2 (30)

Fraction Packed = 7 / 8

Item #2: Size = 1, Load = 30

3

Srinivas Kashyap 26th March 2003

Related Work

• Class constrained knapsack problem (unit size items)
(Shachnai and Tamir)

• Algorithm with tight bound for unit-size items (Gol-
ubchik, Khanna, Khuller, Thurimella, Zhu)

• NP-hard for any fixed k ≥ 2 (Golubchik, Khanna,
Khuller, Thurimella, Zhu)

4

Srinivas Kashyap 26th March 2003

Our Results (Kashyap and Khuller)

• PTAS for arbitrary si ∈ {1, . . . ,∆}. Constant ∆.

• Algorithm with tight bound, when si ∈ {1, 2}. Cannot
guarantee to do better than (1 − 1

(1+
√

�k/2�)2) in this

case.

5

Srinivas Kashyap 26th March 2003

Assumptions

• ∑M
i=1 li ≤ N · L

• ∑M
i=1 si ≤ N · k

6

Srinivas Kashyap 26th March 2003

Sliding Window Algorithm (unit size
items), k=4

k

k

� �
� �
� �
� �

� �
� �
� �
� �

(Items with non−decreasing load)

� �
� �
� �
� �

� �
� �
� �
� �

Split Piece

k

� �
� �
� �
� �

� �
� �
� �
� �

>= L

(Items with non−decreasing load)

k

k

k

(Next Stage)

7

Srinivas Kashyap 26th March 2003

Solution structure(unit size items)

Theorem 1. It is always possible to pack a
(1 − 1

(1+
√

k)2
)-fraction of items for any instance.

The bound is tight!

8

Srinivas Kashyap 26th March 2003

The function (1 − 1
(1+

√
k)2

)

0 10 20 30 40 50 60 70 80 90 100
0.75

0.8

0.85

0.9

0.95

1

Disk Capacity (K)

Fr
ac

tio
n

of
 it

em
s

pa
ck

ed

9

Srinivas Kashyap 26th March 2003

The single-list SW algorithm
(si ∈ {1, . . . ,∆})

ρi = li/si

15

Srinivas Kashyap 26th March 2003

Phase 1

16

Srinivas Kashyap 26th March 2003

Phase 1

17

Srinivas Kashyap 26th March 2003

Phase 1

18

Srinivas Kashyap 26th March 2003

Phase 1

19

Srinivas Kashyap 26th March 2003

Phase 1

20

Srinivas Kashyap 26th March 2003

Phase 1

21

Srinivas Kashyap 26th March 2003

Phase 1

22

Srinivas Kashyap 26th March 2003

Phase 1

23

Srinivas Kashyap 26th March 2003

Phase 1

24

Srinivas Kashyap 26th March 2003

Phase 1

25

Srinivas Kashyap 26th March 2003

Phase 1

26

Srinivas Kashyap 26th March 2003

Phase 1

27

Srinivas Kashyap 26th March 2003

Phase 1

28

Srinivas Kashyap 26th March 2003

Phase 1

29

Srinivas Kashyap 26th March 2003

Phase 2

30

Srinivas Kashyap 26th March 2003

End Phase 1

31

Srinivas Kashyap 26th March 2003

End Phase 1

U : Unassigned load
S: Assigned load
Nl: Load saturated disks
Ns: non Load saturated disks

• S ≥ L × Nl + c × Ns × L

• U ≤ (1 − c) × Ns × L

• U ≤ 2∆NLcL
k

32

Srinivas Kashyap 26th March 2003

Single-List SW algrotihm

Properties:

• Can guarantee to pack a 1 − 1(
1+

√
k

2∆

)2 fraction of

load by the end of phase-1.

• Lose a k−∆
k+∆ fraction in phase-2.

• Always packs a k−∆
k+∆


1 − 1(

1+
√

k
2∆

)2


 fraction of

load.

33

Srinivas Kashyap 26th March 2003

The Multi-List SW algorithm (si ∈ {1, 2})

Main problem: Fragmentation effect.

34

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2})

Algorithm packs a (1 − 1

(1+
√

�k/2�)2)-fraction of items.

Tight bound.

35

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2}, even
K)

• Group size-1 items into groups of size-2. (Will have a
size-2 group with a single size-1 item if m1 is odd)

• Now we can use unit size-SW to solve the problem.

36

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2}, odd
K)

• Maintains three lists:

w1

w2

L1

L2

aux-list

• L1 is the list of the first m1−N size-1 items (arranged
in non-decreasing order of load). If m1 < N , then
L1 = ∅.

• L2 is the list of size-2 items (arranged in non-
decreasing order of load).

• auxlist has the top N (highest demand) size-1 items.
[use N − m1 dummy size-1 items if m1 < N]

37

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2}, odd
K)

• auxlist is a “reserve” of size-1 items.

• Forces the selection of an item from auxlist in each
disk.

38

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2}, odd
K)

m
′
2 is the # of size-2 items on the remaining items list.

m
′
1 is the # of size-1 items.

For each disk, pick and pack the best combination of
the following selections:

• Select w2, 0 ≤ w2 ≤ min(�k
2�, m

′
2) consecutive size-2

items from L2 at each of the positions 1 . . . (m
′
2 −

w2 + 1).

• Select w1, 0 ≤ w1 ≤ min(k − 2w2 − 1, m
′
1) consec-

utive size-1 items from L1 at each of the positions
1 . . . (m

′
1 − w1 + 1)

• One size-1 item from auxlist at each of the positions
1 . . . |aux-list|

39

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2}, odd
K)

Picking the best combination:

• Let S be the list of combinations.

• If ∀s ∈ S, load(s) < L the algorithm outputs the
selection with highest load.

• If ∃s ∈ S where load(s) ≥ L, then let D be the set of
all the selections in S with load ≥ L.

• Let D′ ⊆ D be the set of all the selections which can
be made load-feasible by allowing the split of either
the highest size-2 item in the selection, or the highest
size-1 item (the size-1 item can be either from L1 or
auxlist)

40

Srinivas Kashyap 26th March 2003

Multi-List SW algorithm (si ∈ {1, 2}, odd
K)

Picking the best combination:

• Define wasted space of a selection to be the sum of
the unused space and the size of the item that must
be split to make the selection load-feasible.

• Pick the d ∈ D′
with minimum wasted space.

Reinsert the broken off piece into the appropriate
position in the list from which it was picked.

Shrink auxlist if the piece was reinserted in auxlist.
Move the piece that leaves auxlist into the correct
position in L1.

41

Srinivas Kashyap 26th March 2003

Solution structure(si ∈ {1, 2})

Theorem 2. It is always possible to pack a (1 −
1

(1+
√

�k
2�)2

)-fraction of items for any instance.

The bound is tight!

49

Srinivas Kashyap 26th March 2003

Solution structure(si ∈ {1, 2})

0 10 20 30 40 50 60 70 80 90 100
0.75

0.8

0.85

0.9

0.95

1

Disk Capacity (K)

Fr
ac

tio
n

of
 it

em
s

pa
ck

ed

Unit Size
S

i
ε {1,2}

50

Srinivas Kashyap 26th March 2003

Trivial Tight example, k=3

• Input:

Size-2 items Load

N/4 5L/2
3N/4 L/2

• Optimal Assignment:

Disks Load

N/2 L
N/2 L/2

Fraction of items packed =
NL
2 +N

2
L
2

NL = 3/4.

51

Srinivas Kashyap 26th March 2003

Polynomial Time Approximation Schemes

• When (1 − ε) > k−∆
k+∆


1 − 1(

1+
√

k
2∆

)2


 (k is a con-

stant). Use another algorithm for constant k and
si ∈ {a1, . . . , ac}.

• Otherwise if (1− ε) ≤ k−∆
k+∆


1 − 1(

1+
√

k
2∆

)2


 use the

single-list sliding window algorithm for arbitrary k and
si ∈ {1, . . . ,∆}.

52

Srinivas Kashyap 26th March 2003

Polynomial Time Approximation Schemes

The approximation scheme involves the following basic
steps:

1. Any given input instance can be approximated by
another instance I ′ such that no data item in I ′ has
an extremely high demand.

2. For any input instance there exists a near-optimal so-
lution that satisfies certain structural properties con-
cerning how clients are assigned to disks.

3. Finally, we give an algorithm that in polynomial time
finds the near-optimal solution referred to in step (2)
above, provided the input instance is as determined by
step (1) above.

53

Srinivas Kashyap 26th March 2003

Structured Approximate Solutions

• Disks can be heavy or light. Items can be popular or
unpopular

• Heavy disks get all or none of the clients of an unpop-
ular item

• Clients from a popular item cannot be distributed
over multiple light disks. (consider OPT(I) to be the
lexiographically maximal optimal solution)

54

