

<section-header> Outline Notivation Problem definition Network Design model Variants and special cases Overview of solution methods Dual Ascent approach Computational results Importance of good model formulation Extensions Based on joint work with Thomas Magnanti, Prakash Mirchandani, Richard Wong, and others

lotation					
Parameters					
\succ G:(N,E)	Given graph (directed or undirected)				
▶ $i,j \in N$	Nodes				
▷ $(i,j) \in N$	Edges (directed) or arcs (directed)				
> A	Node-arc incident matrix				
> $k \in K$	Commodities				
$\succ B_k$	Demand vector for commodity k				
\succ F_{ij}	Fixed cost of edge (<i>i</i> , <i>j</i>)				
$\succ c_{ij}^k$	Variable cost of comm. k from i to j on edge (i,j)				
/ariables					
$\succ f_{ij}^k$	Units of flow of comm. k from i to j on edge (i,j)				
≻ Z _{ij}	Design variable;				
,	= 1 if solution includes edge (i,j) , 0 otherwise				

N	letwor		ensions for l st Problems	Undire	cted
Problem	No. of	No. of	No. of	Number of Variables in Formulation P.	
Number		Ares	Commodities	Integer	Continuous
1	20	80	380	80	60,800
2	25	100	600	100	120,000
3	30	130	870	130	226,200
4	35	150	1190	150	357,000
5	40	400	1560	400	1,248,000
6	45	500	1980	500	1,980,000
		Con	plete Network:		
7	15	105	210	105	44,100
8	20	190	380	190	144,400
9	25	300	600	300	360,000
10	30	435	870	435	756,900
EL.	35	595	1190	595	1,416,100

Г

	Dual-Ascent Performance for Asymmetric Test Problems (all test problems have FC/VC ratio = 10.0)							
Proble	m		CPU Time		No. of Ares	No. of Ascent		
Size	: %	Gap*	Total ^b	% Ascent ^e	Deleted	Cycles		
1	2	.15	12.33	53.6	9	4		
2	1	.30	16.76	51.0	61	3		
3	2	.21	23.48	42.8	0	2		
4	1	.70	33.62	35.7	0	2		
5	2	.48	141.67	40.4	0	2		
6	3	.34	285.32	29.6	6	2		
7	3	,54	13.35	63.8	27	5		
8	4	.02	19.47	61.4	0	2		
9	4	.03	48.45	60.9	0	2		
10	3	.79	106.40	52.3	0	2		
11	3	.97	113.65	47.5	0	2		

MLND problem: Computational results

Table 1 Effect of Preprocessing and Problem Size*

Euclidean and random costs.

	Without Preprocessing				With	Preprocessing	reprocessing	
Problem Galegory†	Average % Gap††	Average Ascent Time	Average Add-Drop Tíme	Avg % of Primary Nodes Aggregated	Average % Gap††	Average Set-up Time	Average Ascent Time	Average Add-Drop Time
(50/100, 500, <i>EP</i>)	0.21	11	· 4	40	0.21	2	8	3
(50/100, 500, EN)	0.15	6	3	53	0.13	2	4	2
(80/200, 1,000, EP)	80.0	56	59	39	0.08	7	48	57
(80/200, 1,000, EN)	0.48	66	75	35	0.48	7	53	71
(300/400, 2,000, EP)	0.01	842	189	77	0.02	25	115	82
(300/400, 2,000, EN)	0.00	685	234	74	0.00	25	188	212
(50/100, 500 , <i>BP</i>)	0.06	6	2	53	0.07	2	4	2
(50/100, 500, RN)	0.09	5	4	53	0.07	2	3	3
(80/200, 1,000, RP)	0.89	2,710	42	40	0.89	7	1,900	40
(80/200, 1,000, RA)	0.68	274	150	43	0.65	7	124	94
(300/400, 2,000, RP)	0.02	307	72	71	0.02	26	131	57
(300/400, 2,000, <i>RN</i>)	0.01	1,286	311	73	0.01	25	351	223

* All statistics averaged over 3 problem instances. Computational times in seconds on IBM 4381.

 \uparrow *E* denotes Euclidean cost structure, *R* denotes Random cost structure, *P* denotes Proportional costs; *N* denotes Nonproportional costs. $\uparrow\uparrow$ % gap = (best upper bound – best lower bound)/best lower bound.

MCCOMBS SCHOOL OF BUSINESS

Network Design Model Variant	Characteristics
Capacitated Network Design (CND)	Capacitated edges, no bifurcation of flows
Hop-constrained Network Design (HCND)	# of edges on flow path must not exceed specified maximum
Weight-constrained Network Design (WCND)	Total weight (e.g. delay) on flow path must not exceed specified maximum
Network Loading (NL)	Discrete set of available edge capacities; no flow costs
Multi-level Network Design (MLND)	Multiple node types; higher level nodes require higher grade facilities (edges)
Survivable Network Design (SND)	Require disjoint alternate paths between node pairs
Network Restoration (NR)	Non-simultaneous flow; flow created by failure of edge