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Distribution System Design example
Armstrong World Industries

= Market leader in flooring and ceiling products

= > $ 3 Billion sales in 2001

Product-focused organization structure

» Flooring products division versus Ceiling division

~ distinct manufacturing, sales, distribution
organizations

Traditional distribution system

~ independent flooring and ceiling distributors
~ responsible for sales, pricing, delivery, credit
Big-Box retailers are now biggest customers
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Big-Box Retailers

= Growing rapidly, increasing market power
» Home Depot: $54 billion annual sales, 1400+ US stores and
growing
m Formula for success: wide variety at competitive prices
under one roof
» negotiate low prices from manufacturers
» maintain low store inventory, high variety
» ensure high availability
= “Demanding” customers
> need a single point of contact
» frequent (weekly) deliveries of multiple items in small batches
» 24-hour delivery lead time
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Meeting Big-Box Retailers’ needs

= Set up new distribution network

~ Establish Regional Distribution Centers (RDC) for
warehousing, distribution

~ Specify coverage region (assign stores) for each RDC
~ RDCs receive bulk shipments from factories

~ RDCs deliver orders to stores (small trucks) at
scheduled times (weekly)

= + Organizational changes
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Distribution System Design issues

= Decisions
» How many distribution centers?
» Where?
» Which customers (stores) to assign to each DC?
~ Which plants to supply each DC?

= Problem scope
» 19 Flooring plants, 7 Ceiling plants in U.S. alone
» Hundreds of SKUs
~ Over 2000+ customer locations (stores) nationwide
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Distribution System Design problem

Il
Factory

Potential RDC location
(] Customer (store)
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Cost tradeoffs

= Cost components

» DC costs: Fixed investment + operating costs (fixed and/or
throughput-dependent)

> Inbound (plant-to-DC) transportation costs: including
economies of scale

> Outbound (DC-to-store) delivery cost

= Basic tradeoff

If we open more DCs =» we can locate them closer to customers,
but ...

» Higher total DC fixed costs
» Higher total inbound transportation costs
» Lower outbound delivery cost
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Distribution System Design solution

J Factory
B

RDC
(] Store
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Strategic Distribution System Design applications

= Hunt-Wesson Foods — Geoffrion and Graves (1974)
= Yellow Freight — Powell et al. (1992)

= Digital Equipment Corp. - Brown et al. (1995)

= Procter & Gamble — Camm et al. (1997)

s UPS — Barnhart et al. (1999, 2002)

= Railroad Blocking — Barnhart et al. (2000)

= DHL Hong Kong — Cheung et al. (2001)
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Practice of Supply Chain Design

= Models vary depending on application context
= Large problem sizes ('00s of nodes, ‘000s of O-D pairs)
= Need specialized solution methodologies to exploit problem
structure
= Reported savings of tens to hundreds of millions of dollars
= Optimal design capability supplemented with:
> Detailed simulations to test optimal designs
»  What-if, sensitivity, and scenario analyses

m  Commercial SC and ERP systems now provide APS modules
with SC design optimization capability
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Network Design Problem definition

Fixed cost F7;
Variable (flow) cost ¢,

Destination D,
Demand b,

Commodity &k
Origin O,

Sample solution
. Origin, Destination nodes

[ Transshipment points Decisions: Select edges, route flows
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Network Design Problem definition

s Given
> NODES

o Origins (plants), transshipment points (DC), destinations (stores)

» COMMODITIES

o Origin and destination
o Demand

~ EDGES

o Fixed cost
o Variable (flow) cost

= Required
» Select the edges to use
> Route required flows
m Objective
» Minimize total FIXED cost of design + FLOW costs
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Notation

Parameters
> G:(N,E) Given graph (directed or undirected)
» ijeN Nodes
» (ij) e N Edges (directed) or arcs (directed)

> A Node-arc incident matrix

> kekK Commodities

> B, Demand vector for commodity &

- Fy Fixed cost of edge (i,))

> cl’; Variable cost of comm. k from i to j on edge (i)
Variabl!es

. Units of flow of comm. & from i to j on edge (i,j)

>z Design variable;

y
= 1 if solution includes edge (i), 0 otherwise
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Arc flow formulation

Minimize Fz+ Z c

keK
Flow conservation constraints Afk =B VkeK Forcing
k coefficients
Forcing constraints fk < ukZ Vke K
k
Nonnegativity, integrality f >0 Vke K,Z S {O,I}m
k k flow paths
Routing requirements f eP Vke K P
(optional)

Design restrictions ze Z(f) Permissible
: topologies

(optional)
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Classification of Network Design problems

= Demand structure
~ Complete demand, single source, single destination, ..
» With or without Steiner nodes
= Network structure
» Directed vs. undirected
~ Tree, layered, general
~ With or without edge duplication
» Multiple node types, facility types
m Cost structure

~ Only fixed costs, fixed + variable costs, step function,
general concave costs

m Design and Routing restrictions
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Types of additional constraints

= Routing requirements
~ Weight (e.g., delay) or hop constraints
~ Bifurcated vs. non-bifurcated flows
~ Alternate (edge-disjoint) paths
» Commodity-dependent facility requirements

= Design restrictions
~ Capacity constraints—commodity-specific, bundled
» Simultaneous vs. non-simultaneous usage
~ Degree, diameter constraints
» Precedence, multiple choice constraints
~ Topological restrictions: tree, ring, ...
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Other application contexts for Network Design models

= Supply chain design
s Less-than-truckload consolidation, hub location

= Public utilities (water, electricity, gas, waste) distribution
planning

= Telecomm network design
» Long-distance, local access, ring, wireless
= VLSI, circuit design
= Distributed database location
= Production planning, process design (e.g., chemical)
= Airline operations planning (e.g., fleet assignment)
= Railroad blocking
= Marketing models: Product positioning
= Biology, genetics?
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Research perspectives

* New models
MLND, WCND, Cap. tree ¢overing
» Worst-case analysis

* LTL consolidatio composition methotis
* Distribution sys de Problem reduction
* Local access netwo Dual-ascent

* Restoration planning « Approximation/heurigtics
Algorithms

Applicatio
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Basic Network Design model

= No additional routing requirements or design
restrictions

= Each commodity & has single origin O, and single
destination D,
> Scale all demands to 1 unit

> Define xf as fraction of commodity £'s demand flowing
from node i to node

> Define Cf as cost of routing all units of commaodity &
from node i to node

= Assume directed graph
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Arc flow formulation for Basic model

. . . k k
Minimize Z Fyz; + Z Z Cii Xy

(i.))eE keK (i.))
+1 ifi=0,
Flow conservation Zx: — Zxﬁ =:-1 ifi=D, Vke K
! ! 0 otherwise
Forcing constraints xi'; < Zij V(i, ]) € E, keK
Nonnegativity x;‘. >0 V(i,j)e E,keK
Integrality z; € {0,1} V(i,j)eE
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Some Model Extensions

Node costs

Piecewise-concave costs (economies of scale)

Demand selection

Uncertainty (limited versions)
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Economies of scale (piecewise linear, concave costs)

Fl,cl

A}
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Demand selection

Fixed cost 7,
Variable) cost = 0

Profit m,
Commodity &k
Origin O,

Destination D,
Demand b,
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DC-to-Store Delivery Fee Table

Delivery Weight (pounds)
0-1000 Ibs  1000-4000 4000-10000 > 10,000 Ibs

| store

$40 $70 $100 $140
0-30 P.\
miles ®
Delivery $60 $90 $120 $160
Distance 30-70 @ °
(miles) Miles °
$70 $100 $140 $200
> 70 ® ®
miles
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Special Cases

= Shortest Path problem
» Only one commodity
~ Fixed cost = arc length; variable cost = 0

= Minimum Spanning Tree problem

~ Single source (root node)

» One commodity each to all other nodes

~ Fixed cost = arc length; variable cost = 0
m Steiner Tree problem

~ Same as MST except some nodes are transshipment
nodes (no corresponding commodity)
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Special cases (continued)
= Facility Location problem
= Dynamic Lot-sizing problem

= Traveling Salesman problem
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Facility Location Problem

Plants Customers

Transportation cost

Plant Fixed cost

Source

Bipartite network, single source
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Problem complexity

= Model formulation size grows very rapidly with
problem size

~ Problem with 100 nodes, 2000 arcs (sparse), 2000
commodities has 4 million variables

= Problem is NP-hard since it generalizes several
known difficult problems
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Solution approaches

= Exact methods

~ Decomposition (e.g., Lagrangian relaxation, Bender’s
decomposition, column generation)

» Polyhedral methods (branch-and-cut)

= Approximate methods
~ Optimization-based (e.g., dual ascent, primal-dual)
» Solving restricted (easy) versions
» Local search & improvement methods
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Dual Ascent principle

= Approximately solve dual of LP relaxation
~ By iteratively adjusting the dual multipliers
~ Exploit special problem structure

= Dual solution provides

~ Lower bound on optimal value (performance
guarantee)

~ Starting feasible solution for heuristic improvement
procedure

~ Problem reduction opportunity
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Dual Ascent success stories

Assignment problem (Fisher)

Steiner Tree problem (Wong)
Uncapacitated Network Design (BMW)
Multi-level Network Design (BMM)
Survivable Network Design (Raghavan)
Other optimization problems
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LP relaxation of Basic model

o . . k k
Minimize Z i U+Z Z C;iX;

(i.))eE keK (i.j)eE Dual variables
+1 ifi=0,
Flow conservation Z Zxﬂ -1 ifi=D, VieN,kekK vl.k
0 otherwise
Forcing constraints xl.'; < Z; V(i, ]) ekF, ke K WI.I;
Nonnegativity x;‘,,zl.j >0 V(i,j)e E,keK
Integrality z,; € {O, 1} V(i, ]) ckE
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Dual problem and its special structure

k_  k k
Defined; = ¢, +w,

Maximize Z vh
k

keK
! ko ko k k k gk k P
Node potentials V, ViR E d—l V(l,]) S E,k ek
. . k ..
Fixed cost allocation Z W < F;.j V(l,]) ek
keK
Non-negativity vl.k, W;{. >0 V(i,j)e E,keK

Given values of W,-]; satisfying the FC allocation constraint, for each commodity &,

vj, £ L, is length of shortest path from O, to D, using d;; = c;; +w), as arc lengths
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Dual Ascent idea

m Starting with w =0
~ For each commodity %, selectively increase certain Wf

values—Dby allocating the arc fixed cost F;—to
increase the value of the shortest path length L,

~ Stop when no more increases possible.
= Definitions
- R, = F,— Y w, = Remaining fixed cost on edge (i, /)

k
~ Edge (i,)) is tight for comm. £ if it lies on the shortest
O-D path for comm. &

-~ S =(vi—v/)—d; = Slack on edge (i, ) for comm. k
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Labeling procedure

= Similar to Djikstra’s shortest path algorithm
= For each commodity:
» Find current shortest paths (tight arcs)

~ Define a cutset defined by labeled nodes (incl.
destination)
Increase shortest path length by minimum of

o Remaining fixed cost among tight arcs in cutset
o Slack among loose arcs in cutset

Update dual values, labels

o Allocate fixed costs for tight arcs,

o increase dual objective function value, and

o label additional nodes (if remaining fixed cost is binding)

= Stop when origin node is labeled for all commodities
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‘ Dual Ascent example

Variable cost ;= 1 for all edges, all commodities
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‘ Final dual solution

!

ﬁl‘s:g, Ry =3 L,= s

Final dual value = 14
= Fully allocated edge
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Properties of Dual Ascent procedure

= Generalizes
» Edmond’s directed spanning tree algorithm
» Erlenkotter's DUALOC facility location procedure
» Wong's Steiner Tree algorithm

= Pseudo-polynomial

= Property of final dual solution

» At termination, network consisting of “Fully allocated arcs” is
feasible for the original problem, i.e., this design is guaranteed to
contain at least one O-D path for every commodity
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Dual Ascent outputs

= Lower bound

» Final dual value is a lower bound on optimal value of
network design problem

m Heuristic solution

» Using feasible design from dual ascent procedure as a
starting solution, apply local improvement procedure
(e.g., Add/Drop or interchange heuristic)

= Problem reduction
~ Eliminate edges based on dual solution
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Problem reduction

= Let
» Zp= Final dual objective value
» ZH = Cost of heuristic solution
- R; = Remaining fixed cost of edge (i, /)

= If R, > (Z"-Z,), then edge (i, j) cannot belong to any
optimal solution
=> eliminate edge (i, j), and re-apply dual ascent
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Dual Ascent enhancements

m Use complementary-slackness conditions from final
dual solution to fix w-values, and re-apply dual
ascent procedure to possibly improve lower bound

m Test alternate commodity sequencing schemes

= Add methods to reallocate w-values (versus only
increasing these values)

= Modify method to incorporate additional constraints
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Test problems

Network Ihmensions for Undirected
Test Problems

Number of
V.triabl:._-.s in
Problem Na. of Na. of Mo. of M
Number Nodes Ares Commeodiies [oteger Continuous
1 20 30 380 0 60,800
2 25 100 G [Qg 120,000
3 30 130 Exli] L30 226,200
4 33 158 L1490 150 357,000
5 40 400 1564 400 1,248 000
[ 45 590 L9840 500 1,980,000
Camplete Metwaorks
7 15 105 210 103 &4, 100
] 20 190 380 190 144,400
9 a5 300 a0 00 360,000
U] 30 435 270 415 756,900
ik _.?5 :95 1190 595 1,416,100
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Computational results

Dual-Ascent Performance for Asymmetric Test
Problems (all test problems have FC/VC

ratio = 10.0)

CPU Time MNa. of  No.of

Pmblemn = Ares Ascent

Size % Gap Totl® % Ascent®  Deleied  Cycles
1 215 12,33 536 9 4
2 1.30 16.76 S0 6 3
3 221 2148 438 i} 2
4 1.70 3362 357 0 2
5 248 14L67 404 0 2
a 3134 28532 M4 ¢ 2
7 3,54 1335 638 ry} 3
8 4.02 1947  6la & 2
9 403 4845 609 Q 2
i} 1.7 10640 523 i} 2
WL 347 113483 475 q 2

* % gap = (upper bound — lower baund i/ lower bound,
" CPU time in seconds on zn IBM 3083 (madel BX).
= Prapartion of CPL time reguired for the ascett pracedure.
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Multi-level Network Design (MLND)

= Nodes are classified by level of importance into different types
= Correspondingly, we consider different facility (edge) types

= Higher-level nodes must be interconnected by higher grade
facilities; this sub-network may optionally include lower-level
nodes

= Higher grade facilities are more expensive
= Special case: Two-level Network Design (TLND)
~ Primary nodes P, Secondary nodes S

» Two types of facilities: primary and secondary with
fixed costs a; and b,
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Multi-level Network Design
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TLND Problem formulation

Minimize D’ a,y,+ Y bz, + > D cif

(i.))eE (i.))eE keK (i,))
+1 ifi=0,
Flow conservation Z Zxﬂ =:-1 ifi=D, VkeK
0 otherwise
. ) . k -
Primary forcing constraints Xij < Vi V(l, ]) ek, keP

Secondary forcing constraints x;f < yl.j + Z; V(i,j) € E,k esS

Nonnegativity xk >0 V(i,j)e E,keK
Y-z €401} V(@i j)eE

Integrality
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Special cases and complexity of TLND

m Steiner tree problem
> bij = 0 for all edges (i,))

= (Hierarchical) Path-tree problem
~ Number of primary nodes |P| =

m Proportional-cost TLND problem
~ a; =rby for all edges (i)

The TLND problem is NP-hard even if |P| = 2 and either costs
are proportional or a; = 1 and bij =0orl
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lllustrative Worst-case result for TLND problem

Consider two alternative heuristics

~ Secondary Extension (SE) method
o Connect primary nodes via Steiner tree
o Extend this tree with secondary facilities to span remaining secondary nodes

» Primary Upgrade (PU) method
o Connect all nodes via min spanning tree, with secondary facilities
o Upgrade facilities on induced primary subtree

» SE method is near-optimal when secondary costs are small,
whereas PU method is near-optimal when secondary costs are
close to primary costs

> Hybrid method: select the better of the SE and PU solutions

Theorem: For the proportional-cost TLND problem, if p
denotes the worst-case ratio of the Steiner tree solution in the
SE method, then the Hybrid method has worst-case ratio of

4/(4 — p), and the bound is tight
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MLND Solution strategy

= Problem pre-processing to eliminate edges, flow
variables

= Dual ascent to
~ Generate lower bound
~ ldentify feasible solution
~ Reduce the problem (fix variables)
m Heuristic improvement of dual-based solution
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MLND problem: Computational results

Table 1 Eftect ol Preprocessing and Problem Size"

Euclidean and randon gosts

Withoul Preprace ssing Witn Prepracessing

Average Aug % of Primary Average Average

Average % Average Add-Orop Nodes Avarags % Set-up Average Add-Orap
Problem Cateqary T Gapft Ascent Time Time Agoregated Gapt Time Ascent Time Time
{80/100, 500, £/ o2 " co4 40 0.21 2 § 3
(50,100, 500, FV] 015 [ 3 53 113 2 4 2
(807200, 1,000, £F) 0.08 56 59 3 0.08 7 48 87
{B0/200, 1,000, M) 0.48 56 75 35 148 7 53 Fal
(300,400, 2,000, £7°) oM 842 189 77 0.02 25 AL a2
{300/400, 2,000, £1) 0.00 885 234 74 0.00 25 188 212
{80,100, 600, RP) 008 6 2 53 007 2 4 2
{07100, 500, A1) 0.08 5 £ 53 n.07 2 3 3
80,200, 1,000, #F) 0.89 2710 42 40 0.89 7 1,900 40
{80,/200, 1,000, A4 .68 274 150 43 069 7 124 94
{300,400, 2,000, AP 02 307 72 7 0.02 26 11 57
(3004400, 2,000, AY) 0 1,286 an 13 001 25 351 223

* Al statislies averaged nver 3 problem instances. Camputational times in secands on [BM 4381
1 £ denokes Euclicean cost strusiure A denates Randomn cast struciure, P denotes Proportional costs; ¥ denotez Nanpropartional cosis,
1 % gap = (Bes1 upper bound — BES1 |ower Baund)/best lowsr bound.
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Importance of good model formulation

= Dual ascent methods are successful when problem has
special structure and model formulation is tight

Tight problem formulations

= Obtained by adding valid inequalities (ideally, facets) and expanding
the set of variables

= May vastly increase problem size, but help to:

» Generate good lower bounds
o Better guarantees for heuristic solution quality

» Improve algorithmic performance (lesser enumeration needed in
exact algorithms)

» ldentify better heuristic solutions

= Use iterative (cutting plane, column generation) methods to cope
with larger problem size
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Example: Forcing constraints in Network Design
models

Assume undirected edges

Aggregate forcing constraints

2% K|z & D x5 <Klz v j)eE

keK keK
Disaggregate forcing constraints

xl.';.Szij &xfl.Szl.j V(i,j)eE,ke K
Bidirectional forcing constraints (when flow costs are same for all comm.)

Consider pairs of commodities k and h with same origin or destination

x§+xfiﬁzij V(i,j)e E;k,he K with O, =0, or D, =D,
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Example: Strength of forcing constraints

Problem instance ‘ Aggregate forcing constraint ‘

Fixed cost=1, .
Variable cost =0 Z;= s
for all edges

LP value =1

Disaggregate forcing constraint ‘ ‘ Bi-directional forcing constraint

Z;=1

q

Z;="
for all edges

LP value = 2
= optimal

LP value =1.5
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Learnings

= Network design problems are important for strategic, tactical,
and operational planning of distribution systems, but they are

challenging

= Develop tailored algorithms that exploit the problem’s special

structure

= Strong problem formulations are critically important

= Combine multiple techniques—problem preprocessing,
decomposition, efficient subproblems, iterative model
enhancement, problem reduction, heuristic search and

improvement
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Network Design extensions

Network Design Model Variant

Characteristics

Capacitated Network Design
(CND)

Capacitated edges, no bifurcation of flows

Hop-constrained Network Design
(HCND)

# of edges on flow path must not exceed
specified maximum

Weight-constrained Network Design
(WCND)

Total weight (e.g. delay) on flow path must
not exceed specified maximum

Network Loading (NL)

Discrete set of available edge capacities;
no flow costs

Multi-level Network Design (MLND)

Multiple node types; higher level nodes
require higher grade facilities (edges)

Survivable Network Design (SND)

Require disjoint alternate paths between
node pairs

Network Restoration (NR)

Non-simultaneous flow; flow created by
failure of edge
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