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Motivation: Nurse station location

• Hospital;
k nurses (each with her own station);
n patients in various beds.

• At 8 am, each nurse begins her “morning round” of
patients under her care.

• Morning round ends when all nurses have returned to
their bases.

• Objective: Assign patients to nurses so that morning
rounds end ASAP.
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Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

INPUT
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Applications and literature

• Covering with trees “equivalent” to covering with tours.
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• k-Traveling Repairman: Cover with tours, minimize
average latency. [Fakcharoenphol, Harrelson, Rao
2003]

• k-Traveling Salesman: Cover with tours, minimize total
length. [Haimovich, Rinooy Kan, Stougie 1988]

• Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

• Clustering is like covering with stars: Minimize
maximum edge - k center [Dyer, Frieze, 1985], Minimize
sum of edge lengths k median [Arya, et al 2001],
Minimize sum of star radii [Charikar, Panigrahy, 2001].
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Hardness (of rooted k-star cover)

• Reduction from BIN-PACK:
Given elements U with sizes su,
k bins of size B. Can we pack
elements in k bins?

• Convert to Rooted k-star
cover: Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

• Claim: BIN-PACK is identical
to this special case of Rooted
k-star cover.

• Hardness of others follows by
reducing to Rooted k-star
cover.
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8
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Algorithm for Rooted k-tree cover

• Guess-and-check type algorithm.

• Guess optimal solution cost B. Let true optimum be B∗.

• If “fail”, then proof that B < B∗.
• If “success”, then find solution of cost no more than

4B.

• Binary search yields (weakly) polynomial time
4-approximation algorithm.

• Can be made strongly polynomial; approximation ratio
worsens to 4 + ε.
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Algorithm: Overview

Given B, set of roots R, and G.

1. Remove all edges with we > B.

2. Contract R; compute MST M .
{Ti}i := forest obtained by expanding R.

3. Decompose each Ti into trees {Sj
i }

j + Li s.t.

w(Sj
i ) ∈ [B, 2B) and w(Li) < B.

4. Match trees {Sj
i }

j
i to roots in R within distance B from it.

• If possible, return “success”.
• If impossible, return “fail”.
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Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

INPUT

Roots
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Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots
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Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

Decompose into light trees
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Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

Match − success?
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Algorithm: Success

Claim: On success, each tree has cost no more than 4B.

Proof: Each tree in our solution has 3 components:

Decomposed tree Sj
i , cost ≤ 2B.

Edge to root, cost ≤ B.

Leftover tree Li, cost ≤ B.

�
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Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �
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Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[ εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.
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Algorithm for Unrooted k-tree cover

1. Prune edges we > B.
Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i ) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

Long edges pruned
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Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B ≥ B∗, then ki + 1 ≤ k∗i for all i.

Proof: Let optimal solution cover Gi with {T ∗

1 , . . . , T ∗

k∗

i

}. We
can make it span Gi by adding at most k∗i − 1 edges, so:

k∗

i∑

j=1

w(T ∗

i ) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �
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j=1

w(T ∗

i ) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �
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Extensions and conclusion

• Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.
[Shmoys, Tardos, 1993]

• Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2k stars, each costing no
more than twice the optimum. A la [Shmoys, Tardos,
Aardal, 1997]

• Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

• Questions?
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