# Covering Graphs using Trees and Stars

G. Even N. Garg J. Könemann R. Ravi A. Sinha

#### • Hospital;

- k nurses (each with her own station);
- n patients in various beds.

#### • Hospital;

k nurses (each with her own station); n patients in various beds.

• At 8 am, each nurse begins her "morning round" of patients under her care.

#### • Hospital;

k nurses (each with her own station); n patients in various beds.

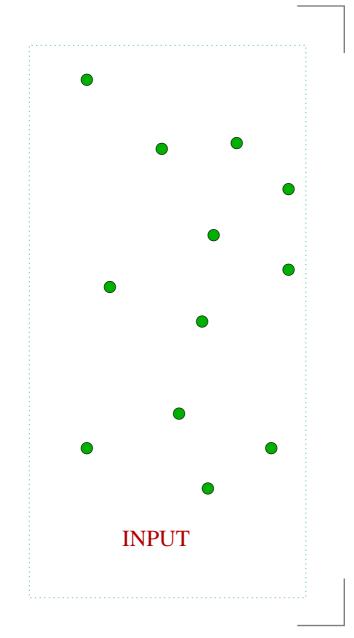
- At 8 am, each nurse begins her "morning round" of patients under her care.
- Morning round ends when all nurses have returned to their bases.

#### • Hospital;

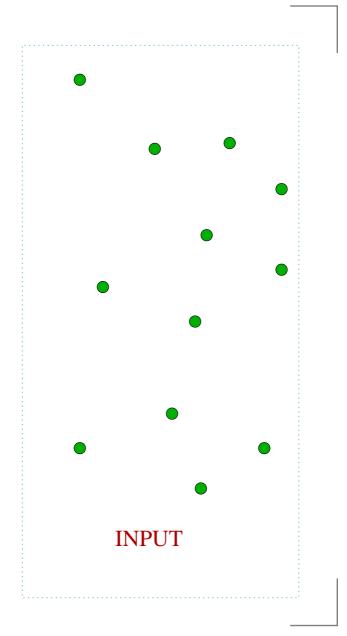
k nurses (each with her own station); n patients in various beds.

- At 8 am, each nurse begins her "morning round" of patients under her care.
- Morning round ends when all nurses have returned to their bases.
- Objective: Assign patients to nurses so that morning rounds end ASAP.

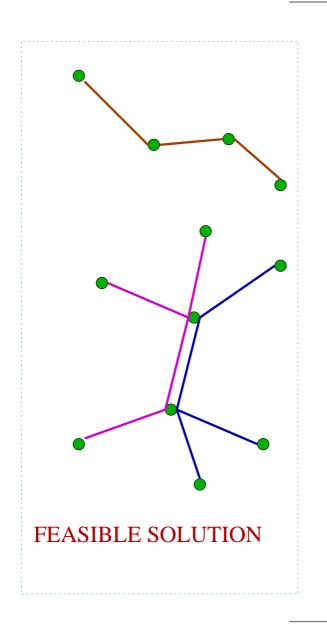
• Input: Graph G = (V, E), edge weights w, integer k.



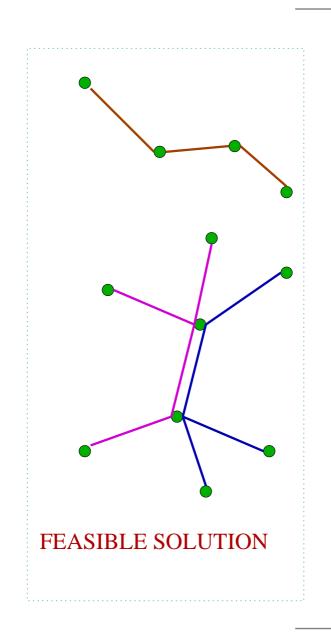
- Input: Graph G = (V, E), edge weights w, integer k.
- *k*-Tree cover: Set of trees  $\{T_1, T_2, \dots, T_k\}$  such that  $\cup_{i=1}^k V(T_i) = V$ .



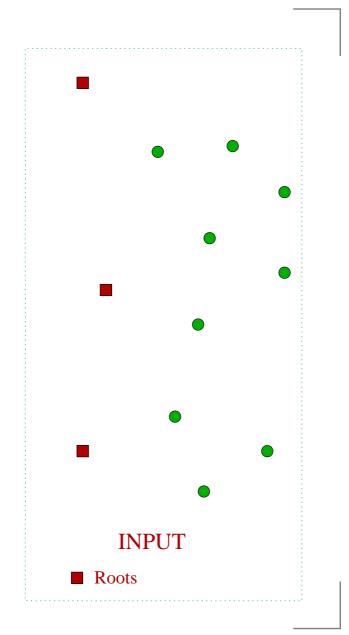
- Input: Graph G = (V, E), edge weights w, integer k.
- *k*-Tree cover: Set of trees  $\{T_1, T_2, \dots, T_k\}$  such that  $\cup_{i=1}^k V(T_i) = V$ .



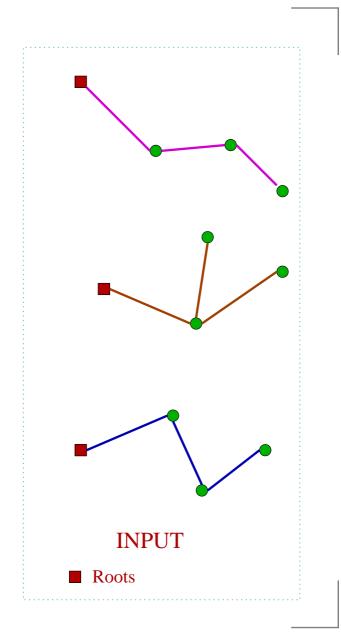
- Input: Graph G = (V, E), edge weights w, integer k.
- *k*-Tree cover: Set of trees  $\{T_1, T_2, \dots, T_k\}$  such that  $\cup_{i=1}^k V(T_i) = V$ .
- Objective: Minimize  $\max_i w(T_i)$ .



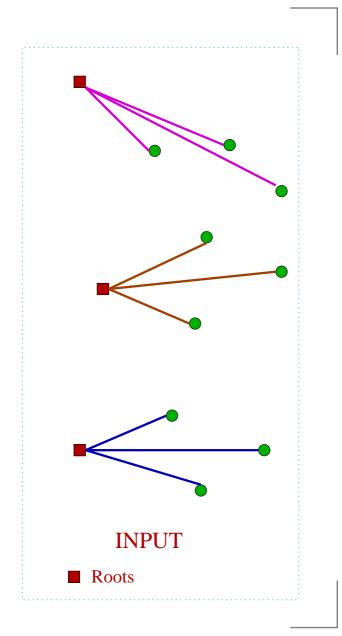
- Input: Graph G = (V, E), edge weights w, integer k.
- *k*-Tree cover: Set of trees  $\{T_1, T_2, \dots, T_k\}$  such that  $\cup_{i=1}^k V(T_i) = V$ .
- Objective: Minimize  $\max_i w(T_i)$ .
- Rooted version: Given roots
  R ⊂ V, find a k-Tree cover with each tree using a distinct root in R.



- Input: Graph G = (V, E), edge weights w, integer k.
- *k*-Tree cover: Set of trees  $\{T_1, T_2, \dots, T_k\}$  such that  $\cup_{i=1}^k V(T_i) = V$ .
- Objective: Minimize  $\max_i w(T_i)$ .
- Rooted version: Given roots
  R ⊂ V, find a k-Tree cover with each tree using a distinct root in R.



- Input: Graph G = (V, E), edge weights w, integer k.
- *k*-Tree cover: Set of trees  $\{T_1, T_2, \dots, T_k\}$  such that  $\cup_{i=1}^k V(T_i) = V$ .
- Objective: Minimize  $\max_i w(T_i)$ .
- Rooted version: Given roots
  R ⊂ V, find a k-Tree cover with each tree using a distinct root in R.
- Star cover: Cover with stars, same objective; may be rooted or unrooted.



• Covering with trees "equivalent" to covering with tours.

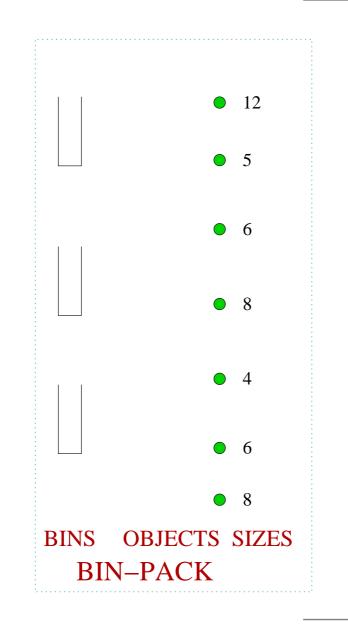
- Covering with trees "equivalent" to covering with tours.
- k-Traveling Repairman: Cover with tours, minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]

- Covering with trees "equivalent" to covering with tours.
- k-Traveling Repairman: Cover with tours, minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- k-Traveling Salesman: Cover with tours, minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]

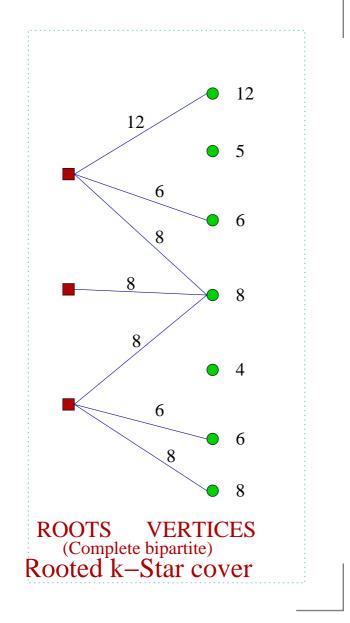
- Covering with trees "equivalent" to covering with tours.
- k-Traveling Repairman: Cover with tours, minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- k-Traveling Salesman: Cover with tours, minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]
- Vehicle Routing: Vast amount of work, e.g. Survey [Toth, Vigo, 2002]

- Covering with trees "equivalent" to covering with tours.
- k-Traveling Repairman: Cover with tours, minimize average latency. [Fakcharoenphol, Harrelson, Rao 2003]
- k-Traveling Salesman: Cover with tours, minimize total length. [Haimovich, Rinooy Kan, Stougie 1988]
- Vehicle Routing: Vast amount of work, e.g. Survey [Toth, Vigo, 2002]
- Clustering is like covering with stars: Minimize maximum edge - k center [Dyer, Frieze, 1985], Minimize sum of edge lengths k median [Arya, et al 2001], Minimize sum of star radii [Charikar, Panigrahy, 2001].

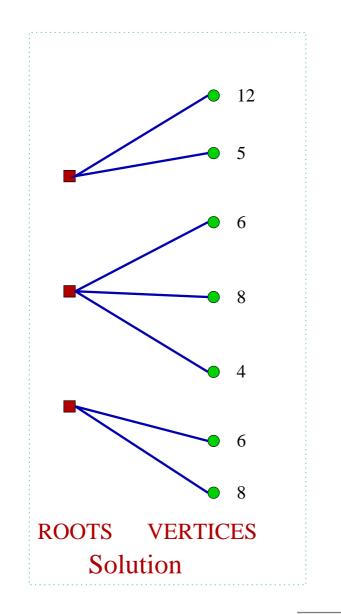
Reduction from BIN-PACK:
 Given elements U with sizes su,
 k bins of size B. Can we pack
 elements in k bins?



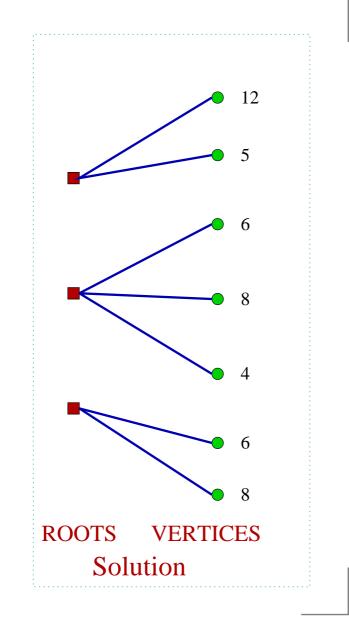
- Reduction from BIN-PACK:
  Given elements U with sizes su,
  k bins of size B. Can we pack
  elements in k bins?
- Convert to Rooted k-star cover: Complete bipartite graph between elements and bins, edge weights = element sizes, bins = roots.



- Reduction from BIN-PACK:
  Given elements U with sizes su,
  k bins of size B. Can we pack
  elements in k bins?
- Convert to Rooted k-star cover: Complete bipartite graph between elements and bins, edge weights = element sizes, bins = roots.
- Claim: BIN-PACK is identical to this special case of Rooted *k*-star cover.



- Reduction from BIN-PACK:
  Given elements U with sizes su,
  k bins of size B. Can we pack
  elements in k bins?
- Convert to Rooted k-star cover: Complete bipartite graph between elements and bins, edge weights = element sizes, bins = roots.
- Claim: BIN-PACK is identical to this special case of Rooted *k*-star cover.
- Hardness of others follows by reducing to Rooted *k*-star cover.



• Guess-and-check type algorithm.

- Guess-and-check type algorithm.
- Guess optimal solution cost B. Let true optimum be  $B^*$ .
  - If "fail", then proof that  $B < B^*$ .
  - If "success", then find solution of cost no more than 4B.

- Guess-and-check type algorithm.
- Guess optimal solution cost B. Let true optimum be  $B^*$ .
  - If "fail", then proof that  $B < B^*$ .
  - If "success", then find solution of cost no more than 4B.
- Binary search yields (weakly) polynomial time 4-approximation algorithm.

- Guess-and-check type algorithm.
- Guess optimal solution cost B. Let true optimum be  $B^*$ .
  - If "fail", then proof that  $B < B^*$ .
  - If "success", then find solution of cost no more than 4B.
- Binary search yields (weakly) polynomial time 4-approximation algorithm.
- Can be made strongly polynomial; approximation ratio worsens to  $4 + \epsilon$ .

Given B, set of roots R, and G.

1. Remove all edges with  $w_e > B$ .

Given B, set of roots R, and G.

- 1. Remove all edges with  $w_e > B$ .
- 2. Contract *R*; compute MST *M*.  $\{T_i\}_i :=$  forest obtained by expanding *R*.

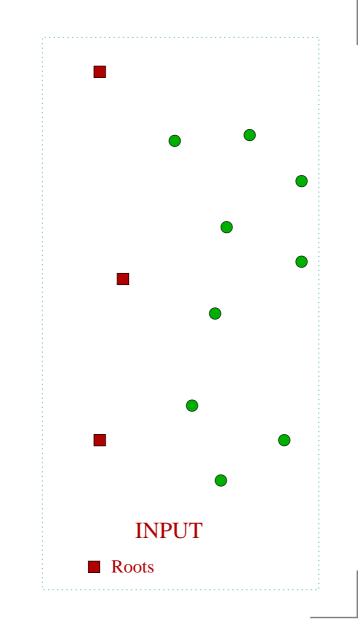
Given B, set of roots R, and G.

- 1. Remove all edges with  $w_e > B$ .
- 2. Contract *R*; compute MST *M*.  $\{T_i\}_i :=$  forest obtained by expanding *R*.
- 3. Decompose each  $T_i$  into trees  $\{S_i^j\}^j + L_i$  s.t.  $w(S_i^j) \in [B, 2B)$  and  $w(L_i) < B$ .

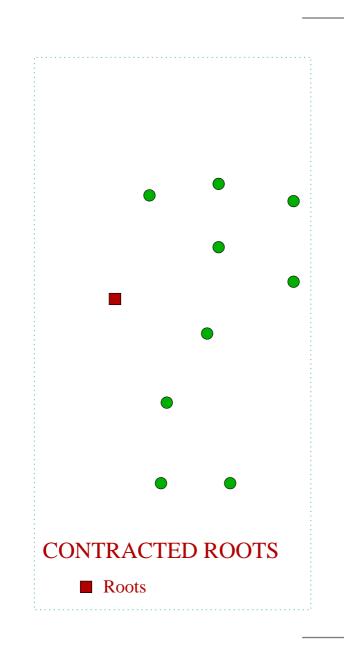
Given B, set of roots R, and G.

- 1. Remove all edges with  $w_e > B$ .
- 2. Contract *R*; compute MST *M*.  $\{T_i\}_i :=$  forest obtained by expanding *R*.
- 3. Decompose each  $T_i$  into trees  $\{S_i^j\}^j + L_i$  s.t.  $w(S_i^j) \in [B, 2B)$  and  $w(L_i) < B$ .
- 4. Match trees  $\{S_i^j\}_i^j$  to roots in *R* within distance *B* from it.
  - If possible, return "success".
  - If impossible, return "fail".

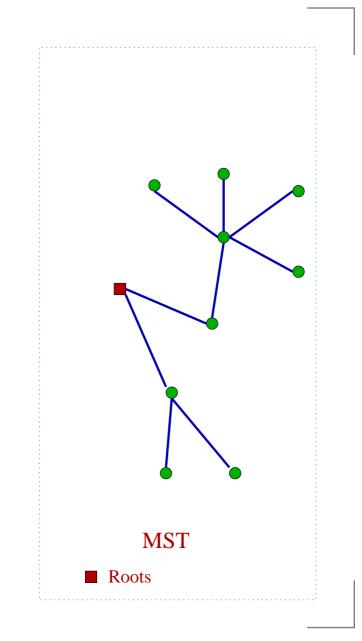
1. Prune.



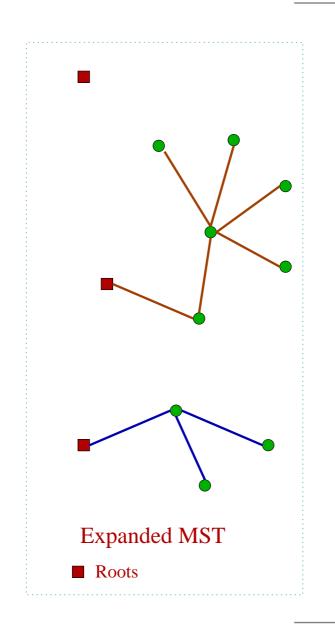
- 1. Prune.
- 2. Contract *R*, compute MST.



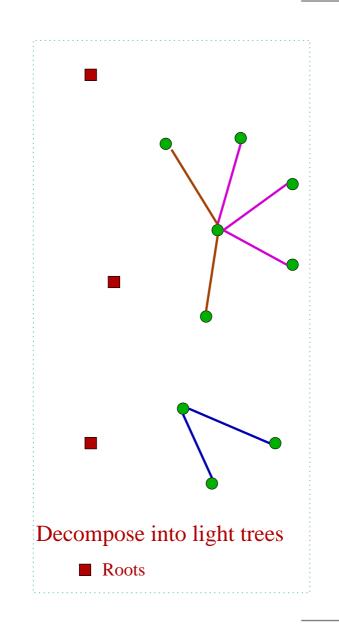
- 1. Prune.
- 2. Contract *R*, compute MST.



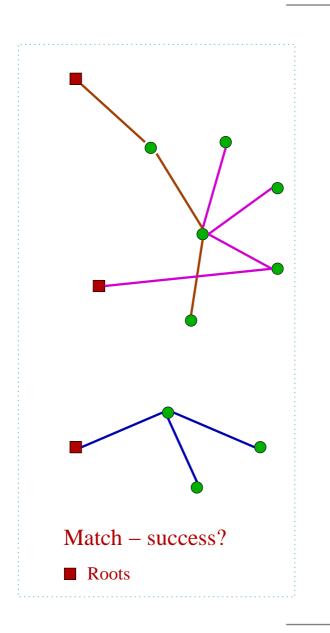
- 1. Prune.
- 2. Contract *R*, compute MST.



- 1. Prune.
- 2. Contract *R*, compute MST.
- 3. Decompose.



- 1. Prune.
- 2. Contract *R*, compute MST.
- 3. Decompose.
- 4. Match.



## **Algorithm: Success**

Claim: On success, each tree has cost no more than 4B.

## **Algorithm: Success**

Claim: On success, each tree has cost no more than 4B.

**Proof**: Each tree in our solution has 3 components:

Decomposed tree  $S_i^j$ , cost  $\leq$ 

2B.

## **Algorithm: Success**

Claim: On success, each tree has cost no more than 4B.

**Proof**: Each tree in our solution has 3 components:

Decomposed tree  $S_i^j$ , cost  $\leq$ 2B.Edge to root, cost  $\leq$ B.

## **Algorithm: Success**

Claim: On success, each tree has cost no more than 4B.

**Proof**: Each tree in our solution has 3 components:

| Decomposed tree $S_i^j$ , cost $\leq$ | 2B. |
|---------------------------------------|-----|
| Edge to root, cost $\leq$             | Β.  |
| Leftover tree $L_i$ , cost $\leq$     | Β.  |

Lemma: On failure (matching does not exist),  $B < B^*$ .

Lemma: On failure (matching does not exist),  $B < B^*$ . Alternatively: If  $B \ge B^*$ , matching exists.

Lemma: On failure (matching does not exist),  $B < B^*$ . Alternatively: If  $B \ge B^*$ , matching exists. Proof: Hall's Theorem: We show  $|N(S)| \ge |S|$  for all  $S \subseteq \{S_i^j\}_i^j$ .

Lemma: On failure (matching does not exist),  $B < B^*$ . Alternatively: If  $B \ge B^*$ , matching exists.

Proof: Hall's Theorem: We show  $|N(S)| \ge |S|$  for all  $S \subseteq \{S_i^j\}_i^j$ .

Consider optimal solution  $T^* = \{T_1^*, \dots, T_k^*\}$ . Let  $T^*(S) = T^* \cap S$ . Hence  $|N(S)| \ge |T^*(S)|$ .

Lemma: On failure (matching does not exist),  $B < B^*$ .

Alternatively: If  $B \ge B^*$ , matching exists.

Proof: Hall's Theorem: We show  $|N(S)| \ge |S|$  for all  $S \subseteq \{S_i^j\}_i^j$ .

Consider optimal solution  $T^* = \{T_1^*, \dots, T_k^*\}$ . Let  $T^*(S) = T^* \cap S$ . Hence  $|N(S)| \ge |T^*(S)|$ .

Deleting all edges in *S* and adding all edges in  $T^*(S)$  also yields a spanning tree of *G*, and since our tree was MST,  $w(T^*(S)) \ge w(S)$ .

Lemma: On failure (matching does not exist),  $B < B^*$ .

Alternatively: If  $B \ge B^*$ , matching exists.

Proof: Hall's Theorem: We show  $|N(S)| \ge |S|$  for all  $S \subseteq \{S_i^j\}_i^j$ .

Consider optimal solution  $T^* = \{T_1^*, \dots, T_k^*\}$ . Let  $T^*(S) = T^* \cap S$ . Hence  $|N(S)| \ge |T^*(S)|$ .

Deleting all edges in *S* and adding all edges in  $T^*(S)$  also yields a spanning tree of *G*, and since our tree was MST,  $w(T^*(S)) \ge w(S)$ .

 $|B^*|N(S)| \ge B^*|T^*(S)| \ge w(T^*(S)) \ge w(S) \ge B|S|.$ 

Fix  $\epsilon > 0$ .

• Sort edges  $w_1 \leq w_2 \leq \ldots \leq w_m$ .

- Sort edges  $w_1 \leq w_2 \leq \ldots \leq w_m$ .
- If algorithm says  $w_m = B < B^*$ , then contract all edges of weight at most  $\frac{\epsilon w_m}{n^2}$ . Now binary search in range  $[\frac{\epsilon w_m}{n^2}, nw_m]$ , which is polynomial.

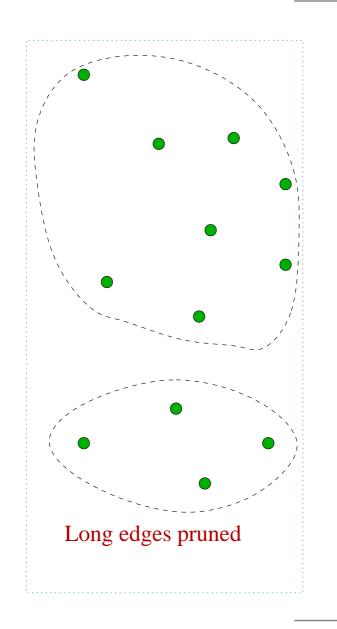
- Sort edges  $w_1 \leq w_2 \leq \ldots \leq w_m$ .
- If algorithm says  $w_m = B < B^*$ , then contract all edges of weight at most  $\frac{\epsilon w_m}{n^2}$ . Now binary search in range  $[\frac{\epsilon w_m}{n^2}, nw_m]$ , which is polynomial.
- Otherwise, find *i* such that  $B^* \in (w_i, 4w_{i+1}]$ .

- Sort edges  $w_1 \leq w_2 \leq \ldots \leq w_m$ .
- If algorithm says  $w_m = B < B^*$ , then contract all edges of weight at most  $\frac{\epsilon w_m}{n^2}$ . Now binary search in range  $[\frac{\epsilon w_m}{n^2}, nw_m]$ , which is polynomial.
- Otherwise, find *i* such that  $B^* \in (w_i, 4w_{i+1}]$ .
- If  $\frac{w_{i+1}}{w_i} \leq \frac{n^2}{\epsilon}$ , binary search in above range is polynomial.

- Sort edges  $w_1 \leq w_2 \leq \ldots \leq w_m$ .
- If algorithm says  $w_m = B < B^*$ , then contract all edges of weight at most  $\frac{\epsilon w_m}{n^2}$ . Now binary search in range  $[\frac{\epsilon w_m}{n^2}, nw_m]$ , which is polynomial.
- Otherwise, find *i* such that  $B^* \in (w_i, 4w_{i+1}]$ .
- If  $\frac{w_{i+1}}{w_i} \leq \frac{n^2}{\epsilon}$ , binary search in above range is polynomial.
- If not, set  $w' = n^2 w_i / \epsilon$ . If  $B^* \in [w_i, w']$ , then polynomial.

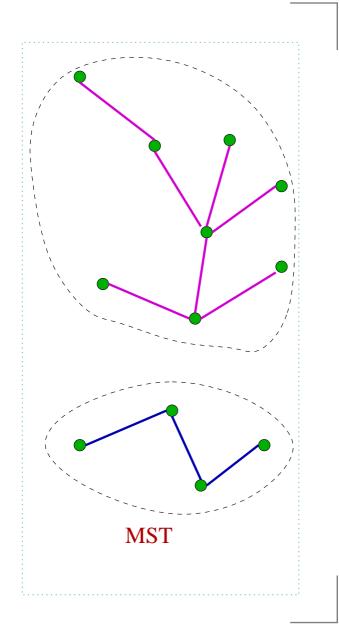
- Sort edges  $w_1 \leq w_2 \leq \ldots \leq w_m$ .
- If algorithm says  $w_m = B < B^*$ , then contract all edges of weight at most  $\frac{\epsilon w_m}{n^2}$ . Now binary search in range  $[\frac{\epsilon w_m}{n^2}, nw_m]$ , which is polynomial.
- Otherwise, find *i* such that  $B^* \in (w_i, 4w_{i+1}]$ .
- If  $\frac{w_{i+1}}{w_i} \leq \frac{n^2}{\epsilon}$ , binary search in above range is polynomial.
- If not, set  $w' = n^2 w_i / \epsilon$ . If  $B^* \in [w_i, w']$ , then polynomial.
- If not, then contract all edges of weight at most  $w_i$ . Now binary search in  $[w_{i+1}, 4w_{i+1}]$  is polynomial.

1. Prune edges  $w_e > B$ . Let  $\{G_i\}_i$  be components.



1. Prune edges  $w_e > B$ . Let  $\{G_i\}_i$  be components.

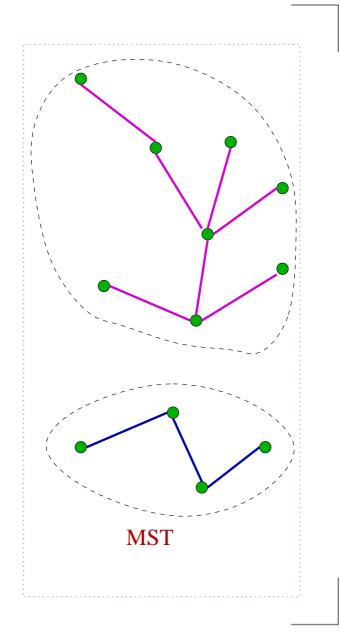
2.  $MST_i = MST \text{ of } G_i.$  $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor.$ 



1. Prune edges  $w_e > B$ . Let  $\{G_i\}_i$  be components.

2. 
$$MST_i = MST \text{ of } G_i$$
.  
 $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor$ .

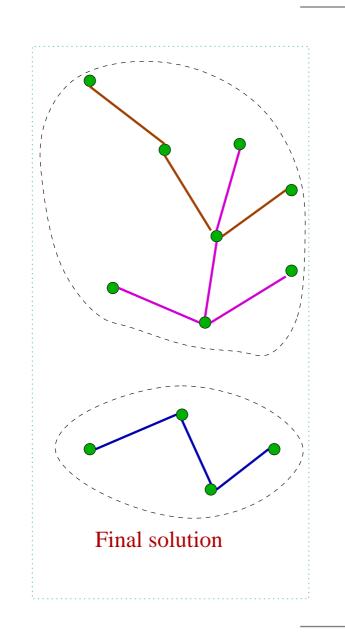
3. If  $\sum_{i} (k_i + 1) > k$ , return "fail".



1. Prune edges  $w_e > B$ . Let  $\{G_i\}_i$  be components.

2. 
$$MST_i = MST \text{ of } G_i$$
.  
 $k_i = \lfloor \frac{w(MST_i)}{2B} \rfloor$ .

- 3. If  $\sum_{i} (k_i + 1) > k$ , return "fail".
- 4. Decompose each  $MST_i$  into at most  $k_i+1$  trees  $S_i^1+\ldots+S_i^{k_i}+L_i$ such that  $w(S_i^j) \in [2B, 4B)$  and  $w(L_i) < 2B$ . Return "success".





Claim: On success, each tree has weight no more than 4B.



Claim: On success, each tree has weight no more than 4B.

Claim: On failure,  $B < B^*$ .

### Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure,  $B < B^*$ . Alternatively, if  $B \ge B^*$ , then  $k_i + 1 \le k_i^*$  for all *i*.

# Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure,  $B < B^*$ . Alternatively, if  $B \ge B^*$ , then  $k_i + 1 \le k_i^*$  for all *i*. Proof: Let optimal solution cover  $G_i$  with  $\{T_1^*, \ldots, T_{k_i^*}^*\}$ . We can make it span  $G_i$  by adding at most  $k_i^* - 1$  edges, so:

$$\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)$$

# Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure,  $B < B^*$ . Alternatively, if  $B \ge B^*$ , then  $k_i + 1 \le k_i^*$  for all *i*. Proof: Let optimal solution cover  $G_i$  with  $\{T_1^*, \ldots, T_{k_i^*}^*\}$ . We can make it span  $G_i$  by adding at most  $k_i^* - 1$  edges, so:

$$\sum_{j=1}^{k_i^*} w(T_i^*) + (k_i^* - 1)B \ge w(MST_i)$$

Therefore  $k_i^* \ge \frac{w(MST_i)}{2B} + \frac{1}{2} > k_i$ .

 Rooted k-star cover: Reduces to Generalized Assignment problem, yields a 2-approximation. [Shmoys, Tardos, 1993]

- Rooted k-star cover: Reduces to Generalized Assignment problem, yields a 2-approximation. [Shmoys, Tardos, 1993]
- Unrooted k-star cover: LP rounding gives bicriteria approximation: Covers with 2k stars, each costing no more than twice the optimum. A la [Shmoys, Tardos, Aardal, 1997]

- Rooted k-star cover: Reduces to Generalized Assignment problem, yields a 2-approximation. [Shmoys, Tardos, 1993]
- Unrooted k-star cover: LP rounding gives bicriteria approximation: Covers with 2k stars, each costing no more than twice the optimum. A la [Shmoys, Tardos, Aardal, 1997]
- Tree cover algorithms also yield constant factor approximations for tour cover, the original nursing station location problem.

- Rooted k-star cover: Reduces to Generalized Assignment problem, yields a 2-approximation. [Shmoys, Tardos, 1993]
- Unrooted k-star cover: LP rounding gives bicriteria approximation: Covers with 2k stars, each costing no more than twice the optimum. A la [Shmoys, Tardos, Aardal, 1997]
- Tree cover algorithms also yield constant factor approximations for tour cover, the original nursing station location problem.
- Questions?