o N

Covering Graphs using Trees
and Stars

G. Even N.Garg J.Konemann R.Ravi A. Sinha

Motivation: Nurse station location

o N

e Hospital;
k nurses (each with her own station);
n patients in various beds.

Motivation: Nurse station location

o N

e Hospital;
k nurses (each with her own station);
n patients in various beds.

e At 8 am, each nurse begins her “morning round” of
patients under her care.

-

Motivation: Nurse station location

e Hospital;
k nurses (each with her own station);
n patients in various beds.

e At 8 am, each nurse begins her “morning round” of
patients under her care.

e Morning round ends when all nurses have returned to
their bases.

-

.—p.2

Motivation: Nurse station location

o N

e Hospital;
k nurses (each with her own station);
n patients in various beds.

e At 8 am, each nurse begins her “morning round” of
patients under her care.

e Morning round ends when all nurses have returned to
their bases.

o Objective: Assign patients to nurses so that morning
rounds end ASAP.

o |

.—p.2

Problem definition

f e Input: Graph G = (V, E), edge S T
weights w, integer k. °
INPUT

Problem definition

f o Input: Graph G = (V, E), edge e T

weights w, integer k.

e k-Tree cover: Set of trees
{Tl, Is, ... ,Tk} such that

UF_ V() = V.

Problem definition

f o Input: Graph G = (V, E), edge e T

weights w, integer k. o
o k-Tree cover: Set of trees \/\
{T},Ts,...,T;} such that

U V() = V.

FEASIBLE SOLUTION

= e |

.—p.3

Problem definition
f o Input: Graph G = (V, E), edge e T

weights w, integer k. o
o k-Tree cover: Set of trees \/\
{T},Ts,...,T;} such that

s V(T = V.
o Objective: Minimize max; w(7;).

FEASIBLE SOLUTION

= e |

.—p.3

Problem definition

f o Input: Graph G = (V, E), edge i T
weights w, integer k. s

e k-Tree cover: Set of trees . .
{11,T5,...,T,} such that |

U V(T;) = V. 3 . 3
o Objective: Minimize max; w(7T;). . o
e Rooted version: Given roots °
R c V, find a k-Tree cover with
each tree using a distinct root o
In R. . .
5 . :

INPUT

- mRos P

.—p.3

Problem definition

f o Input: Graph G = (V, E), edge — T
weights w, integer k.

e k-Tree cover: Set of trees
{Tl, Is, ... ,Tk} such that

U V() = V.

o Objective: Minimize max; w(7;). '\[/<

e Rooted version: Given roots
R c V, find a k-Tree cover with
each tree using a distinct root
In R.

INPUT

- mRos P

.—p.3

Problem definition

f o Input: Graph G = (V, E), edge S T

weights w, integer k.
o k-Tree cover: Set of trees
{T1, T, ..., Ty} such that

®
U V(T) =V |

o Objective: Minimize max; w(73). %

e Rooted version: Given roots
R c V, find a k-Tree cover with

each tree using a distinct root
n R. .<. .

o Star cover: Cover with stars, |
same objective; may be rooted INPUT

B Roots

L or unrooted. ERots J

.—p.3

Applications and literature

o N

o Covering with trees “equivalent” to covering with tours.

Applications and literature

o N

o Covering with trees “equivalent” to covering with tours.

e k-Traveling Repairman: Cover with tours, minimize
average latency. [Fakcharoenphol, Harrelson, Rao
2003]

-

Applications and literature

o Covering with trees “equivalent” to covering with tours.

e k-Traveling Repairman: Cover with tours, minimize
average latency. [Fakcharoenphol, Harrelson, Rao
2003]

e k-Traveling Salesman: Cover with tours, minimize total
length. [Haimovich, Rinooy Kan, Stougie 1988]

-

.—p4

-

Applications and literature

o Covering with trees “equivalent” to covering with tours.

e k-Traveling Repairman: Cover with tours, minimize
average latency. [Fakcharoenphol, Harrelson, Rao
2003]

e k-Traveling Salesman: Cover with tours, minimize total
length. [Haimovich, Rinooy Kan, Stougie 1988]

e Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

-

.—p4

Applications and literature

o N

o Covering with trees “equivalent” to covering with tours.

e k-Traveling Repairman: Cover with tours, minimize
average latency. [Fakcharoenphol, Harrelson, Rao
2003]

e k-Traveling Salesman: Cover with tours, minimize total
length. [Haimovich, Rinooy Kan, Stougie 1988]

e Vehicle Routing: Vast amount of work, e.g. Survey
[Toth, Vigo, 2002]

e Clustering is like covering with stars: Minimize
maximum edge - k£ center [Dyer, Frieze, 1985], Minimize
sum of edge lengths & median [Arya, et al 2001],
Minimize sum of star radii [Charikar, Panigrahy, 2001].

o |

.—p4

Hardness (of rooted k-star cover)

f o Reduction from BIN-PACK: S T
Given elements U with sizes s,,
k bins of size B. Can we pack U ° 12
elements in £ bins? 5
o
|
o 4
| .
i @ 38

BINS OBJECTS SIZES

~ BIN-PACK
- e -

Hardness (of rooted k-star cover)

f e Reduction from BIN-PACK:
Given elements U with sizes s,,
k bins of size B. Can we pack
elements in £ bins?

o Convert to Rooted k-star
cover. Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

'ROOTS VERTICES
| (Complete bipartite)

B Rooted k—Star cover n

Hardness (of rooted k-star cover)

e Reduction from BIN-PACK: e T
Given elements U with sizes s, | |
k bins of size B. Can we pack .

elements in k£ bins? 5

o Convert to Rooted k-star
cover. Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

o Claim: BIN-PACK is identical -\:

6

4

to this special case of Rooted °

k-star cover. 8

ROOTS VERTICES

Solution
R J

Hardness (of rooted k-star cover)

e Reduction from BIN-PACK:

Given elements U with sizes s,,
k bins of size B. Can we pack
elements in k£ bins?

Convert to Rooted k-star
cover. Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

Claim: BIN-PACK is identical
to this special case of Rooted
k-star cover.

Hardness of others follows by
reducing to Rooted k-star
cover.

.

12

5

6

8

-
I

4

ROOTS VERTICES

Solution
R J

Algorithm for Rooted £-tree cover

o N

o Guess-and-check type algorithm.

-

Algorithm for Rooted £-tree cover

-

o Guess-and-check type algorithm.

o Guess optimal solution cost B. Let true optimum be B*.

o If “fail”, then proof that B < B*.

e If “success”, then find solution of cost no more than
1B.

.—p.6

-

Algorithm for Rooted k-tree cover

-

o Guess-and-check type algorithm.

o Guess optimal solution cost B. Let true optimum be B*.

o If “fail”, then proof that B < B*.

e If “success”, then find solution of cost no more than
1B.

e Binary search yields (weakly) polynomial time
4-approximation algorithm.

.—p.6

Algorithm for Rooted k-tree cover

o N

o Guess-and-check type algorithm.

o Guess optimal solution cost B. Let true optimum be B*.

o If “fail”, then proof that B < B*.

e If “success”, then find solution of cost no more than
1B.

e Binary search yields (weakly) polynomial time
4-approximation algorithm.

e Can be made strongly polynomial; approximation ratio
worsens to 4 + e.

o |

.—p.6

Algorithm: Overview

-

Given B, set of roots R, and @.

1. Remove all edges with w. > B.

Algorithm: Overview

-

Given B, set of roots R, and @.

1. Remove all edges with w. > B.

2. Contract R; compute MST M.
{T;}; := forest obtained by expanding R.

Algorithm: Overview

-

Given B, set of roots R, and @.

1. Remove all edges with w. > B.

2. Contract R; compute MST M.
{T;}; := forest obtained by expanding R.

3. Decompose each T; into trees {S{ o+ L; st

w(S?) € [B,2B) and w(L;) < B.

.—p.7

Algorithm: Overview

-

Given B, set of roots R, and @.

1. Remove all edges with w. > B.

2. Contract R; compute MST M.
{T;}; := forest obtained by expanding R.

3. Decompose each T; into trees {S{ o+ L; st
w(S?) € [B,2B) and w(L;) < B.

4. Match trees {S7} to roots in R within distance B from it.

o |If possible, return “success”.
o If impossible, return “fail”.

o |

.—p.7

Algorithm: Demonstration
f 1. Prune. S T

O ®
.
.
°
.
O
O
O O
O
INPUT
Bl Roots

Algorithm: Demonstration
f 1. Prune. S T

2. Contract R, compute MST.

CONTRACTED ROOTS
| B Roots |

. T .

Algorithm: Demonstration
f 1. Prune. S T

2. Contract R, compute MST.

Algorithm: Demonstration
f 1. Prune. S T

2. Contract i, compute MST. ®

.

Expanded MST
B Roots

T |

Algorithm: Demonstration
f 1. Prune. S T

2. Contract i, compute MST. ®

3. Decompose.

-

Decompose into light trees
‘ B Roots ‘

B I -

Algorithm: Demonstration
f 1. Prune. S T

2. Contract i, compute MST. ®
3. Decompose.

4. Match.

.

Match — success?
B Roots

e -

Algorithm: Success

o N

Claim: On success, each tree has cost no more than 45.

-

Algorithm: Success

Claim: On success, each tree has cost no more than 45.

Proof:. Each tree in our solution has 3 components:

Decomposed tree S7, cost < 2B.

-

.—p.9

Algorithm: Success

o N

Claim: On success, each tree has cost no more than 45.

Proof:. Each tree in our solution has 3 components:

Decomposed tree S7, cost < 2B.

Edge to root, cost < B.

.—p.9

Algorithm: Success

o N

Claim: On success, each tree has cost no more than 45.

Proof:. Each tree in our solution has 3 components:

Decomposed tree Sf , cost < 2B.
Edge to root, cost < B.
L eftover tree L;, cost < B.

[]

.—p.9

Algorithm: Failure

o N

Lemma: On failure (matching does not exist), B < B*.

Algorithm: Failure

o N

Lemma: On failure (matching does not exist), B < B*.

Alternatively: If B > B*, matching exists.

Algorithm: Failure

-

Lemma: On failure (matching does not exist), B < B*.
Alternatively: If B > B*, matching exists.

Proof: Hall’'s Theorem: We show |N(S)| > | S| for all
S c {s?H.

.—p.10

-

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B*.

Alternatively: If B > B*, matching exists.

Proof: Hall’'s Theorem: We show |N(S)| > | S| for all
S c{sy.

Consider optimal solution 7% = {717, ..., T;}. Let
T*(S)=T*NS. Hence |N(S)| > |T*(9)].

-

.—p.10

Algorithm: Failure

-

.

Lemma: On failure (matching does not exist), B < B*.
Alternatively: If B > B*, matching exists.

Proof: Hall’'s Theorem: We show |N(S)| > | S| for all

S c {s?H.

Consider optimal solution 7% = {717, ..., T;}. Let
T*(S)=T*NS. Hence [N (9)| > |T7(9)].

Deleting all edges in S and adding all edges in 7*(S) also

yields a spanning tree of (G, and since our tree was MST,
w(T*(S)) > w(S).

-

.—p.10

Algorithm: Failure
- -

Lemma: On failure (matching does not exist), B < B*.
Alternatively: If B > B*, matching exists.

Proof: Hall’'s Theorem: We show |N(S)| > | S| for all
S c {s?H.

Consider optimal solution 7% = {717, ..., T;}. Let
T*(S)=T*NS. Hence [N (9)| > |T7(9)].

Deleting all edges in S and adding all edges in 7*(S) also
yields a spanning tree of (G, and since our tree was MST,
w(T*(S)) > w(S).

BYIN(S)| > BHT*(S)| = w(I*(8)) > w(S) > BIS|. 0
. |

.—p.10

Strongly polynomial algorithm

o N

Fix e > 0.

e Sortedges wi <ws < ... < wpy.

Strongly polynomial algorithm

o N

Fix e > 0.

o Sortedges wi < wsy < ... < wpy.

o If algorithm says w,, = B < B*, then contract all edges
of weight at most £z, Now binary search in range

n2

(Y naw,,], which is polynomial.

n2

Strongly polynomial algorithm

o N

Fix e > 0.

o Sortedges wi < wsy < ... < wpy.

o If algorithm says w,, = B < B*, then contract all edges
of weight at most £z, Now binary search in range

n2

(Y naw,,], which is polynomial.

n2

o Otherwise, find ¢ such that B* € (w;, 4w;+1].

.—p.l1

Strongly polynomial algorithm

o N

Fix e > 0.

o Sortedges wi < wsy < ... < wpy.

o If algorithm says w,, = B < B*, then contract all edges
of weight at most £z, Now binary search in range

n2

(Y naw,,], which is polynomial.

n2

o Otherwise, find ¢ such that B* € (w;, 4w;+1].

: 2
o If =51 < 2 binary search in above range is polynomial.

o |

.—p.l1

Strongly polynomial algorithm

o N

Fix e > 0.

o Sortedges wi < wsy < ... < wpy.

o If algorithm says w,, = B < B*, then contract all edges
of weight at most £z, Now binary search in range

n2

(Y naw,,], which is polynomial.

n2

o Otherwise, find ¢ such that B* € (w;, 4w;+1].

: 2
o If =51 < 2 binary search in above range is polynomial.

o If not, set w’ = n*w;/e. If B* € [w;,w'], then polynomial.

o |

.—p.l1

Strongly polynomial algorithm

o N

Fix e > 0.

o Sortedges wi < wsy < ... < wpy.

o If algorithm says w,, = B < B*, then contract all edges
of weight at most £z, Now binary search in range

n2

(Y naw,,], which is polynomial.

n2

o Otherwise, find ¢ such that B* € (w;, 4w;+1].

: 2
o If =51 < 2 binary search in above range is polynomial.

o If not, set w’ = n*w;/e. If B* € [w;,w'], then polynomial.

e If not, then contract all edges of weight at most w;. Now
binary search in [w;, 1, 4w;1] IS polynomial.

o |

.—p.l1

Algorithm for Unrooted £-tree cover

f 1. Prune edges we > B. e A —‘

Let {G;};, be components. e
| RN
.
°
°
N ® ///
@
@ @

Long edges [_)runed

- |

.—p.12

Algorithm for Unrooted £-tree cover

L puneedges -5 S
Let {G;}; be components.

2. MST, = MST of G;.
]{ __ MST)J-

Algorithm for Unrooted £-tree cover

f 1. Prune edges w, > B. e, T
Let {G;}; be components.

2. MST MSTOfGZ-.

3. If > (ki +1) > k, return “fail”.

Algorithm for Unrooted £-tree cover

f 1. Prune edges w, > B. e, T
Let {G;}; be components.

2. MST, = MST of G;.
]{ __ MST)J-

3. If > (ki +1) > k, return “fail”.

4. Decompose each MST; into at
most k;+1 trees S} +.. .+ Sy 4+ L,
such that w($Y) € 2B,4B)and -

T " Final i";/’
w(L;) < 2B. Return “success”. el sotution

Analysis

o N

Claim: On success, each tree has weight no more than 45.

Analysis

o N

Claim: On success, each tree has weight no more than 45.

Claim: On failure, B < B*.

.—p.13

Analysis

o N

Claim: On success, each tree has weight no more than 45.

Claim: On failure, B < B*.

Alternatively, if B > B*, then k; + 1 < k] for all 4.

.—p.13

-

Analysis
-

Claim: On success, each tree has weight no more than 45.

Claim: On failure, B < B*.

Alternatively, if B > B*, then k; + 1 < k] for all 4.

Proof: Let optimal solution cover G; with {77, ..., T }. We
can make it span G; by adding at most £7 — 1 edges, so:

K
> w(Ty) + (kf = 1)B > w(MST;)
j=1

.—p.13

Analysis

o N

Claim: On success, each tree has weight no more than 45.

Claim: On failure, B < B*.
Alternatively, if B > B*, then k; + 1 < k] for all 4.

Proof: Let optimal solution cover G; with {77, ..., T }. We
can make it span G; by adding at most £7 — 1 edges, so:

K
> w(Ty) + (kf = 1)B > w(MST;)
j=1

Therefore £ > W51 1~ O

o |

.—p.13

Extensions and conclusion

o N

e Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.
[Shmoys, Tardos, 1993]

Extensions and conclusion

o N

e Rooted k-star cover: Reduces to Generalized

Assignment problem, yields a 2-approximation.
[Shmoys, Tardos, 1993]

e Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2% stars, each costing no

more than twice the optimum. A la [Shmoys, Tardos,
Aardal, 1997]

.—p.14

Extensions and conclusion

o N

e Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.
[Shmoys, Tardos, 1993]

e Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2% stars, each costing no
more than twice the optimum. A la [Shmoys, Tardos,
Aardal, 1997]

e Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

.—p.14

Extensions and conclusion

o N

e Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.
[Shmoys, Tardos, 1993]

e Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2% stars, each costing no
more than twice the optimum. A la [Shmoys, Tardos,
Aardal, 1997]

e Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

L e Questions? J

.—p.14

	
	Motivation: Nurse station location
	Problem definition
	Applications and literature
	Hardness (of rooted k-star cover)
	Algorithm for Rooted k-tree cover
	Algorithm: Overview
	Algorithm: Demonstration
	Algorithm: Success
	Algorithm: Failure
	Strongly polynomial algorithm
	Algorithm for Unrooted k-tree cover
	Analysis
	Extensions and conclusion

