
Multicommodity Rent or Buy:
Approximation Via Cost Sharing

Martin Pál

Joint work with
Anupam Gupta Amit Kumar

Tim Roughgarden

ïCost sharing algorithm for Steiner forest:
what do we want

ïCost sharing for Steiner forest +
Simple randomized analysis =
Approximation for Rent or Buy

ïHow does the cost sharing work

Talk Outline

Steiner Forest and Rent or Buy

Input:
ïWeighted graph G
ïSet of demand pairs D

Solution:

A set of paths, one for
each (si,ti) pair

Steiner Forest and Rent or Buy

Input:
ïWeighted graph G
ïSet of demand pairs D

Steiner Forest: pay ce for
each edge e we use,
regardless of how many
paths use it

Steiner Forest and Rent or Buy

Input:
ïWeighted graph G
ïSet of demand pairs D

Rent or Buy: pay ce per
pair for renting, or buy
for M⋅ce

Related Work

ï2-approximation for Steiner Forest
[Agarwal, Klein, Ravi 91] , [Goemans, Williamson 95]

ïConstant approximation for Rent or Buy
[Kumar, Gupta, Roughgarden 02]

ïSpanning Tree + Randomization = Single Sink Rent or Buy
[Gupta, Kumar, Roughgarden 03]

Cost Sharing for Steiner Forest

Cost sharing algorithm: approximation algorithm that
given D, computes solution FD and set of cost shares
ξ(D,j) for j∈ D

Cost Sharing for Steiner Forest

Cost sharing algorithm: approximation algorithm that
given D, computes solution FD and set of cost shares
ξ(D,j) for j∈ D

(P1) Constant approximation: cost(FD) ≤ α St*(D)

(P2) Cost shares do not overpay: Σj ξ(D,j) ≤ St*(D)

(P3) Cost shares pay enough: let D’ = D ∪ {si, ti}

dist(si, ti) in G/ FD ≤ β ξ(D’,i)

What does (P3) say

What does (P3) say

Solution for Solution for

a

c

ξ(,) ≥ β (a+c)

b

The Rent or Buy Algorithm

Algorithm SimpleMRoB:

3. Mark each demand pair independently at random with
prob. 1/M. Let S be the marked set.

4. Use a cost sharing algorithm to build a Steiner
forest on the marked set S.

5. Rent shortest paths between all unmarked pairs.

Analysis

Claim: Expected cost of buying an optimal
Steiner forest on S is at most OPT.

Corollary: Expected cost of step 2 ≤ α ⋅ OPT

Corollary: Expected sum of cost shares ≤ OPT

Analysis (2)

Claim: Expected cost of step 3 is at most β ⋅ OPT.

Let S’ = S – {i}

E[cost share of i | S’] = 1/M ⋅ M ξ(S’+i, i)

E[rental cost of i | S’] = (M-1)/M ⋅ (dist(sj, tj) in G/FS’)

From (P3):

E[rental cost of i | S’] ≤ β ⋅ E[cost share of i | S’]

E[rental cost of i] ≤ β ⋅ E[cost share of i]

Analysis (3)
There is a cost sharing algorithm with α = 6, β = 6.

Theorem: SimpleMRoB is a 12-approximation algorithm.

Existing Steiner forest algorithms

ïEach demand starts in a separate cluster
ïActive clusters grow at unit rate
ïWhen two clusters touch, they merge into one
ïDemands may get deactivated
ïA cluster is deactivated if it has no active demands
ïInactive clusters do not grow
ïKeep adding enough edges so that all active demands
in a component are connected

Existing Steiner forest algorithms

Existing Steiner forest algorithms

Existing Steiner forest algorithms

Existing Steiner forest algorithms

Existing Steiner forest algorithms

Existing Steiner forest algorithms

How to define cost shares

Need to pay for the growth of the clusters

Active demands share equally the cost of growth of a
cluster.

a(u,τ) = 1 / (# of active demands in cluster with u)

 = 0 if u not active at time τ

cost share of u = ∫ a(u,τ) dτ

Does it work?

(P1) Constant approximation: cost(FD) ≤ α St*(D)

(P2) Cost shares do not overpay: Σj ξ(D,j) ≤ St*(D)

(P3) Cost shares pay enough: let D’ = D ∪ {si, ti}

dist(si, ti) in G/ FD ≤ β ξ(D’,i)

(P1) and (P2) easy to verify. How about (P3)?

Does it work?

2 22+ε

Does it work?

2 22+ε

Does it work?

2 22+ε

cost share of = 2/n + ε

Does it work?

2 22+ε

cost share of = 2/n + ε << 2 + ε

solution without

Solution

Inflate the balls !

3. Run the standard [AKR, GW] algorithm

4. Note the time Tj when each demand j deactivated

5. Run the algorithm again, except that now every
demand j deactivated at time γ⋅Tj for some γ > 1

Adopting proof from [GW]: buying cost at most 2⋅γ⋅OPT.

Works on our example

γ = 2

Works on our example

Works on our example

Works on our example

How to prove (P3)

Need to compare runs on D and D’ = D ∪ {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of
length(P)

How to prove (P3)

Need to compare runs on D and D’ = D ∪ {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of
length(P)

Instead of ξ(D’,i), use
alone(i), the total time
si or ti was alone in its
cluster

How to prove (P3)

Need to compare runs on D and D’ = D ∪ {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of
length(P)

How to prove (P3)

Need to compare runs on D and D’ = D ∪ {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of
length(P)

How to prove (P3)

Need to compare runs on D and D’ = D ∪ {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of
length(P)

ξ(D’,), = 2.5

alone() = 2.0

Mapping of layers

Lonely layer: generated by si or ti while the only active
demand in its cluster

Each non-lonely layer in the D’ run maps to γ layers in the
scaled D run.

Idea:

length(P) = #of lonely and non-lonely layers crossed in D’
run

length(P) ≥ #of layers it crosses in scaled D run

Hence: for each non-lonely layer, γ-1 lonely layers
crossed.

Mapping not one to one

Two non-lonely layers in D’ run can map to the same layer
in scaled D run.

D’ run

scaled D run

Not all layers of D run cross P

A layer in D’ run that crosses P can map to a layer in
scaled D run that does not cross P

D’ run scaled D run
si si

The “waste” can be bounded.

Open problems

ï Does SimpleMRoB work with unscaled GW? With an
arbitrary Steiner forest subroutine?

ï Other cost sharing functions? (crossmonotonic..)

