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ïCost sharing algorithm for Steiner forest: 
what do we want 

ïCost sharing for Steiner forest +
Simple randomized analysis = 
Approximation for Rent or Buy

ïHow does the cost sharing work

Talk Outline



Steiner Forest and Rent or Buy

Input:
ïWeighted graph G
ïSet of demand pairs D

Solution:

A set of paths, one for 
each (si,ti) pair



Steiner Forest and Rent or Buy

Input:
ïWeighted graph G
ïSet of demand pairs D

Steiner Forest: pay ce for 
each edge e we use, 
regardless of how many 
paths use it



Steiner Forest and Rent or Buy

Input:
ïWeighted graph G
ïSet of demand pairs D

Rent or Buy: pay ce per 
pair for renting, or buy 
for M⋅ce



Related Work

ï2-approximation for Steiner Forest
[Agarwal, Klein, Ravi 91] , [Goemans, Williamson 95]

ïConstant approximation for Rent or Buy
[Kumar, Gupta, Roughgarden 02]

ïSpanning Tree + Randomization = Single Sink Rent or Buy
[Gupta, Kumar, Roughgarden 03]



Cost Sharing for Steiner Forest

Cost sharing algorithm: approximation algorithm that 
given D, computes solution FD and set of cost shares 
ξ(D,j) for j∈ D



Cost Sharing for Steiner Forest

Cost sharing algorithm: approximation algorithm that 
given D, computes solution FD and set of cost shares 
ξ(D,j) for j∈ D

(P1) Constant approximation: cost(FD) ≤ α St*(D)

(P2) Cost shares do not overpay:  Σj ξ(D,j) ≤ St*(D)

(P3) Cost shares pay enough: let D’ = D ∪  {si, ti}

dist(si, ti) in G/ FD  ≤  β ξ(D’,i)



What does (P3) say



What does (P3) say

Solution for Solution for 

a

c

ξ(          ,     ) ≥ β (a+c)

b



The Rent or Buy Algorithm

Algorithm SimpleMRoB:

3. Mark each demand pair independently at random with 
prob. 1/M. Let S be the marked set.

4. Use a cost sharing algorithm to build a Steiner 
forest on the marked set S.

5. Rent shortest paths between all unmarked pairs.



Analysis

Claim: Expected cost of buying an optimal 
Steiner forest on S is at most OPT.

Corollary: Expected cost of step 2 ≤ α ⋅ OPT

Corollary: Expected sum of cost shares ≤ OPT



Analysis (2)

Claim: Expected cost of step 3 is at most β ⋅ OPT.

Let S’ = S – {i}

E[cost share of i | S’] = 1/M ⋅ M ξ(S’+i, i) 

E[rental cost of i | S’] = (M-1)/M ⋅ (dist(sj, tj) in G/FS’ ) 

From (P3): 

E[rental cost of i | S’]  ≤ β ⋅ E[cost share of i | S’] 

E[rental cost of i]  ≤ β ⋅ E[cost share of i] 



Analysis (3)
There is a cost  sharing algorithm with α = 6, β = 6.

Theorem: SimpleMRoB is a 12-approximation algorithm.



Existing Steiner forest algorithms

ïEach demand starts in a separate cluster
ïActive clusters grow at unit rate
ïWhen two clusters touch, they merge into one
ïDemands may get deactivated
ïA cluster is deactivated if it has no active demands
ïInactive clusters do not grow
ïKeep adding enough edges so that all active demands 
in a component are connected



Existing Steiner forest algorithms
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Existing Steiner forest algorithms



How to define cost shares

Need to pay for the growth of the clusters

Active demands share equally the cost of growth of a 
cluster.

a(u,τ) = 1 / (# of active demands in cluster with u)

          = 0    if u not active at time τ

cost share of u = ∫ a(u,τ)  dτ



Does it work?

(P1) Constant approximation: cost(FD) ≤ α St*(D)

(P2) Cost shares do not overpay:  Σj ξ(D,j) ≤ St*(D)

(P3) Cost shares pay enough: let D’ = D ∪  {si, ti}

dist(si, ti) in G/ FD  ≤  β ξ(D’,i)

(P1) and (P2) easy to verify. How about (P3)?



Does it work?

2 22+ε



Does it work?
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Does it work?

2 22+ε

cost share of    = 2/n + ε



Does it work?

2 22+ε

cost share of    = 2/n + ε  << 2 + ε

solution without 



Solution

Inflate the balls !

3. Run the standard [AKR, GW] algorithm

4. Note the time Tj when each demand j deactivated

5. Run the algorithm again, except that now every 
demand j deactivated at time γ⋅Tj for some γ > 1

Adopting proof from [GW]: buying cost at most  2⋅γ⋅OPT.



Works on our example

γ = 2



Works on our example
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How to prove (P3)

Need to compare runs on D and D’ = D ∪  {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of 
length(P)



How to prove (P3)

Need to compare runs on D and D’ = D ∪  {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of 
length(P)

Instead of ξ(D’,i), use 
alone(i), the total time 
si or ti was alone in its 
cluster
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How to prove (P3)

Need to compare runs on D and D’ = D ∪  {si, ti}

Idea: 1. pick a {si, ti} path P in G/ FD

2. Show that ξ(D’,i) accounts for a constant fraction of 
length(P)

ξ(D’,   ), = 2.5

alone(   ) = 2.0



Mapping of layers

Lonely layer: generated by si or ti while the only active 
demand in its cluster

Each non-lonely layer in the D’ run maps to γ layers in the 
scaled D run.

Idea: 

length(P) = #of lonely and non-lonely layers crossed in D’ 
run

length(P) ≥ #of layers it crosses in scaled D run

Hence: for each non-lonely layer, γ-1 lonely layers 
crossed.



Mapping not one to one

Two non-lonely layers in D’ run can map to the same layer 
in scaled D run.

D’ run

scaled D run



Not all layers of D run cross P

A layer in D’ run that crosses P can map to a layer in 
scaled D run that does not cross P

D’ run scaled D run
si si

The “waste” can be bounded.



Open problems

ï Does SimpleMRoB work with unscaled GW? With an 
arbitrary Steiner forest subroutine?

ï Other cost sharing functions? (crossmonotonic..)


