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Survivable Network Design: 
Problem Motivation

Telecomm service disruptions are costly and catastrophic
“Just in case, Many Firms Work to Set Up Redundant 
Telecommunication Systems”, Wall Street Journal, Dec. 20, 2001

Telecomm companies must report to FCC outages that last > 30 
minutes and affect > 30,000 customers

⇒ Need to ensure that service is uninterrupted, particularly for 
important customers, dense areas

Logistics network disruption can cause significant financial loss
The West Coast ports shutdown last fall resulted in estimated losses 
of $1-2 billion/day (New York Times, Oct. 8, 2002)
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Select robust network topology, containing multiple 
disjoint paths between critical nodes

Install spare capacity and hardware to instantaneously 
re-route flows when a link or node fails

Providing Uninterrupted Service

SURVIVABLE NETWORK DESIGN problem

NETWORK RESTORATION problem
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Survivable Network Design: Principles

Topology of network determines its ability to cope with 
disruptions and failures.

Providing redundancy (alternate paths) for all possible 
flows can be prohibitively expensive.  

So, identify critical or important flows (or nodes), and 
ensure that these flows have alternate paths
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Node importance levels

Critical nodes: require multiple edge-disjoint paths 
interconnecting them

Regular nodes: must be reachable, i.e., require one path
Steiner nodes: optional intermediate points

For each node i, let ri∈{0, 1, 2, …} be the level of 
node i
Network must contain min {ri, rj} edge-disjoint paths 
interconnecting node i to node j
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Survivable Network Topology

US map courtesy  http://info.er.usgs.gov/fact-sheets/maps-us/index.html
Level-3 Level-2 Regular
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Survivable Network Design (SND) Problem

Given:
location of nodes, and their importance levels (critical, 
regular, Steiner nodes)
possible network interconnections (edges)
fixed cost for each edge

Goal:
Find minimum cost network configuration to meet all 
connectivity requirements with edge-disjoint paths
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Notation

G:(V,E) given undirected network
i, j nodes of network

Index the nodes in decreasing order of importance level.  
So, node 1 has highest importance level.
C, R, S = set of Critical, Regular, and Steiner nodes

rij minimum required number of edge-disjoint 
paths from node i to node j

(i, j) edges of network
cij cost of using edge (i, j) in the design



11

uij = design variable; =1 if edge (i, j) is selected, 0 otherwise

Cutset {S, T} = set of edges separating nodes of S from T=V\S

Need at least                            edges across each cutset {S,T} 

Classical Cutset Model
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Equivalent Flow Formulation: Full_Demand

For every pair of nodes k, l∈R ∪ C, define a commodity <k,l> 
with origin k, destination l, demand rkl
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k∈K = index of commodity with origin 1, destination k

O(n) commodities versus O(n2) commodities for the Full-Demand case
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Equivalent Flow Formulation: Tree_Demand
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Equivalence of FULL_DEMAND and 
TREE_DEMAND Formulations

Proof based on the following elementary observations:
Observation 1:  Symmetric Flow

Observation 2: Transitive Flow

Observation 3: Distributive Flow
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Problem Complexity

Generalizes several classical optimization problems
Traveling Salesman problem
Facility Location problem
Steiner Tree problem

NP-Hard problem
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Literature Review

Exact (polyhedral) methods
Grötschel et al.,1992, 1995, 1997
Magnanti and Raghavan, 2002
Chopra and Rao, 1994, Goemans, 1994 (Steiner tree)

Approximate (heuristic) approaches
Based on structural properties

Monma and Shallcross, 1989
Goemans and Bertsimas, 1993
Balakrishnan, Magnanti and Mirchandani, 2002

Primal-dual
Goemans and Williamson, 1995
Williamson, Goemans, Mihail, Vazirani, 1995
Goemans, Goldberg, Plotkin, Shmoys, Tardos, Williamson, 1994 

Linear programming-based
Jain, 2001 
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Solution Approach

Generate tight lower bounds
Identify and add valid inequalities to increase LP relaxation value

Generate good heuristic solutions
LP-rounding procedure

If gap between upper and lower bound is small, stop.
Else, possibly use branch-and-cut procedure
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Strengthening the SND Model

“Upgrade” the node importance levels, if possible

Upgrade the Regular nodes in the backbone (multi-connected) 
network to Critical nodes
Upgrade the Steiner nodes in the access (backbone) network to 
Regular (Critical) nodes

Strengthen the forcing constraints

Add cardinality and (conditional) degree constraints
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Survivable Network Topology

US map courtesy  http://info.er.usgs.gov/fact-sheets/maps-us/index.html
Level-3 Level-2 Regular
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Extended Flow Model

tk =  Node-level upgrade variable
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U1 “Criticalize” Regular nodes based on Critical flows 

U2 “Regularize” Steiner nodes

U3 “Criticalize” Steiner nodes based on Critical flows

U4 “Criticalize” Regular/Steiner nodes based on criticalized Regular/Steiner 
flows (bootstrap)

Node Upgrade constraints
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Node Upgrade (contd)

U5 “Criticalize” Regular nodes with two critical neighbors
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Bi-directional Forcing constraints

BF1 Regular-Regular Forcing constraints

BF2 Regular-Critical Forcing constraints

BF3 Regular-incident Forcing constraints
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D1 Regular node degree constraints

D2 Design cardinality constraints

Design constraints
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Base Model: Tree_Flow

Node Upgrade Model: Base model + criticalize regular nodes

Strong Model: Other constraints
Extended Regular node upgrades
Steiner node upgrades
Strong bi-directional constraints
Degree and cardinality constraints

Hierarchy of SND (Flow) Models
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Comparison of Flow Formulation solutions

LP Solution for Base Formulation
Cost = 3.5
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LP Solution for Node Upgrade Formulation
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LP Solution for Strong Formulation
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Benefits of Strong SND Formulation

The new node-upgrade models are stronger than the traditional 
cutset formulation.  

provides better LP-based lower bounds 
for some problem instances, strong LP gives optimal integer 
solution
improves computational performance of branch-and-bound 
algorithm
provides better, quicker heuristic solutions

Goal: Evaluate computational effectiveness of strong formulation
through empirical testing
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Determining Upper Bound:
Iterative LP-rounding heuristic

Step 1: Solve LP relaxation of SND model
Step 2: Round-up a fractional edge value uij to 1

Selecting the fractional edge 
max uij

max “utilization”
min incremental rounding cost per unit of flow

Step 3: Re-solve LP relaxation with fixed edges
If solution is integer-valued, Stop
Else, repeat Step 2



30

Computational Testing

Objectives
Develop and implement optimization-based methodology for 
SND problem
Compare LP relaxations of Base and Enhanced SND models
Evaluate the effectiveness of LP relaxation and heuristics

Computational Platform
Dual Processor 933 MHz, 2 GB Ram; Windows 2000
LP solver: CPLEX Version 7.5

Test problems
randomly generated, Euclidean
parameters to vary network size and topology, distribution of 
node levels
3 instances per problem type
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Computational Results: Summary

0-25-75 0.7%
0-50-50 0.1%
0-75-25 0.0%
20-40-40 0.0%
40-30-30 0.0%
Average 0.16%

# Strong LP closes gap 12 of 15
0-25-75 0.0%
0-50-50 0.9%
0-75-25 0.6%
20-40-40 0.3%
40-30-30 0.4%
Average 0.44%

# Strong LP closes gap 9 of 15
0-25-75 0.6%
0-50-50 0.3%
0-75-25 0.6%
20-40-40 2.5%
40-30-30 0.2%
Average 0.82%

# Strong LP closes gap 3 of 15

Problem Size

# of Nodes: 20     
# of Arcs: 80

# of Nodes: 30     
# of Arcs: 120

Percentage Gap (%)S-R-C node 
proportions

# of Nodes: 40     
# of Arcs: 160
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Computational Results: LP effectiveness

Base
Node 

Upgrade Strong

0-25-75 3.1% 0.8% 0.7% 78.4%
0-50-50 13.0% 4.8% 0.1% 99.0%
0-75-25 26.4% 16.2% 0.0% 99.8%
20-40-40 10.9% 3.4% 0.0% 99.7%
40-30-30 12.1% 5.8% 0.0% 100.0%
0-25-75 4.5% 1.2% 0.0% 100.0%
0-50-50 17.1% 9.2% 0.9% 93.9%
0-75-25 25.6% 15.4% 0.6% 97.0%
20-40-40 14.6% 7.6% 0.3% 98.2%
40-30-30 15.8% 7.8% 0.4% 97.1%
0-25-75 4.2% 0.9% 0.6% 83.5%
0-50-50 13.3% 2.2% 0.3% 97.2%
0-75-25 29.4% 17.6% 0.6% 97.4%
20-40-40 14.1% 7.3% 2.5% 81.0%
40-30-30 12.3% 6.2% 0.2% 97.6%
0-25-75 4.0% 1.0% 0.4% 87.3%
0-50-50 14.5% 5.4% 0.4% 96.7%
0-75-25 27.1% 16.4% 0.4% 96.0%
20-40-40 13.2% 6.1% 0.9% 93.0%
40-30-30 13.4% 6.6% 0.2% 98.2%

Problem Size

# of Nodes: 30     
# of Arcs: 120

# of Nodes: 40     
# of Arcs: 160

# of Nodes: 20     
# of Arcs: 80

Average

S-R-C node 
proportions

% Gap 
Reduction

Integrality Gap (%)
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Computational Results (contd)

Using Base model, CPLEX required over 4 hours to solve
40 node problem instance

# of Nodes: 40     
# of Arcs: 160 0-1-2-3 Problem 25-25-25-25 2.1%

# of Nodes: 100     
# of Arcs: 400 0-1-2  Problem 50-0-50 0.9%

Node Proportion by Level Percentage Gap (%)Problem Size
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Heuristic performance

S-R-C node proportions

Max u Cost/Unit Flow 
0-25-75 2 of 3 2 of 3
0-50-50 2 of 3 3 of 3
0-75-25 3 of 3 3 of 3
20-40-40 3 of 3 3 of 3
40-30-30 3 of 3 3 of 3

Total 13 of 15 14 of 15
0-25-75 3 of 3 3 of 3
0-50-50 3 of 3 2 of 3
0-75-25 3 of 3 3 of 3
20-40-40 2 of 3 3 of 3
40-30-30 2 of 3 3 of 3

Total 13 of 15 14 of 15
0-25-75 2 of 3 2 of 3
0-50-50 2 of 3 2 of 3
0-75-25 2 of 3 2 of 3
20-40-40 2 of 3 2 of 3
40-30-30 2 of 3 3 of 3

Total 10 of 15 11 of 15

Heuristic Performance
Problem Size

# of Nodes: 20     
# of Arcs: 80

# of Nodes: 40     
# of Arcs: 160

# of Nodes: 30     
# of Arcs: 120
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Conclusions

Strong problem formulations are very effective for 
solving difficult SND problems
LP-based heuristic, based on strong formulation, 
performs well
Min incremental cost per unit of flow method is superior 
to max uij method
Further work

More testing for higher connectivity problems
More comparison with IP solution times
Polyhedral results


