Designing Survivable Networks: A Flow Based Approach

Prakash Mirchandani¹ University of Pittsburgh

This is joint work with Anant Balakrishnan² of the University of Texas at Austin and Hari Natarajan of Penn State University.

¹Partially supported by NSF grant number DMI-0115434 ²Partially supported by NSF grant number DMI-0115304

Outline

- Problem motivation
- Problem definition
- Cut formulation
- Basic flow formulations
- Model enhancements
- LP-based heuristic
- Computational results

Survivable Network Design: Problem Motivation

Telecomm service disruptions are costly and catastrophic

- "Just in case, Many Firms Work to Set Up Redundant Telecommunication Systems", Wall Street Journal, Dec. 20, 2001
- Telecomm companies must report to FCC outages that last > 30 minutes and affect > 30,000 customers
- ⇒ Need to ensure that service is uninterrupted, particularly for important customers, dense areas
- Logistics network disruption can cause significant financial loss
 - The West Coast ports shutdown last fall resulted in estimated losses of \$1-2 billion/day (*New York Times,* Oct. 8, 2002)

Providing Uninterrupted Service

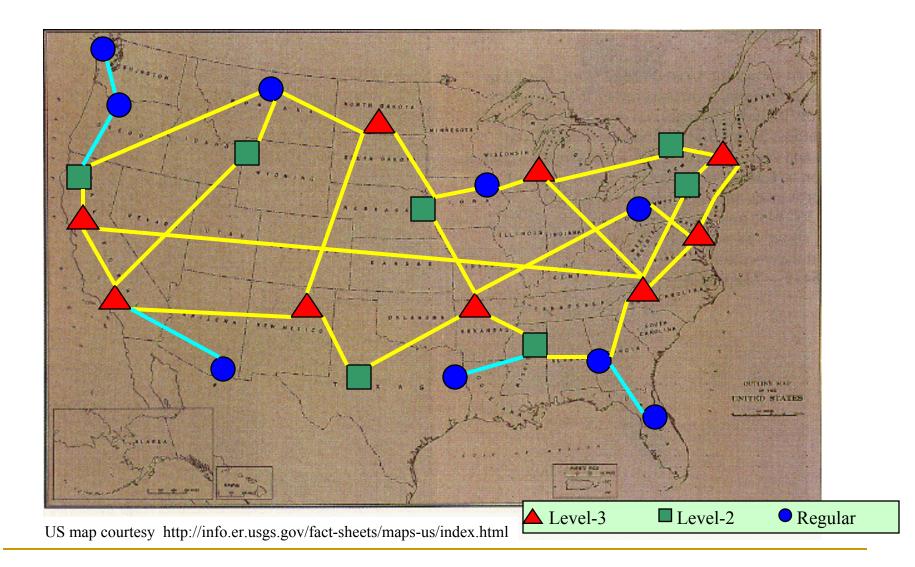
 Select robust network topology, containing multiple disjoint paths between critical nodes

SURVIVABLE NETWORK DESIGN problem

 Install spare capacity and hardware to instantaneously re-route flows when a link or node fails

NETWORK RESTORATION problem

Survivable Network Design: Principles


- Topology of network determines its ability to cope with disruptions and failures.
- Providing redundancy (alternate paths) for all possible flows can be prohibitively expensive.
- So, identify critical or *important* flows (or nodes), and ensure that these flows have alternate paths

Critical nodes: require multiple edge-disjoint paths interconnecting them

Regular nodes: must be reachable, i.e., require one path **Steiner** nodes: optional intermediate points

- For each node i, let $r_i \in \{0, 1, 2, ...\}$ be the *level* of node i
- Network must contain min {r_i, r_j} edge-disjoint paths interconnecting node i to node j

Survivable Network Topology

Survivable Network Design (SND) Problem

Given:

- location of nodes, and their importance levels (critical, regular, Steiner nodes)
- possible network interconnections (edges)
- fixed cost for each edge

Goal:

Find minimum cost network configuration to meet all connectivity requirements with edge-disjoint paths

Notation

- G:(V,E) given undirected network
- *i*, *j* nodes of network
 - Index the nodes in decreasing order of importance level.
 So, node 1 has highest importance level.
 - \Box C, R, S = set of Critical, Regular, and Steiner nodes
- *r_{ij}* minimum required number of edge-disjoint paths from node *i* to node *j*
- (*i*, *j*) edges of network
- c_{ij} cost of using edge (i, j) in the design

Classical Cutset Model

- $u_{ij} = design$ variable; =1 if edge (i, j) is selected, 0 otherwise
- Cutset {*S*, *T*} = set of edges separating nodes of *S* from $T = V \setminus S$
- Need at least $q_{ST} = \max_{i \in S, j \in T} (r_{ij})$ edges across each cutset $\{S, T\}$

$$\begin{bmatrix} CUT \end{bmatrix} \qquad Z^* = Z_{CUT} = \min \sum_{(i,j)\in E} c_{ij} u_{ij}$$

subject to:
$$\sum_{(i,j)\in\{S,T\}} u_{ij} \ge q_{ST} \forall \text{ cutsets } \{S,T\}$$
$$u_{ij} \in \{0,1\} \qquad \forall (i,j)\in E.$$

Equivalent Flow Formulation: Full_Demand

For every pair of nodes k, $l \in R \cup C$, define a *commodity* $\langle k, l \rangle$ with origin k, destination l, demand r_{kl}

$$\begin{bmatrix} FULL_DEMAND \end{bmatrix} \qquad Z_{FULL_DEMAND} = \min \sum_{(i,j) \in E} c_{ij}u_{ij}$$
subject to:

$$\sum_{j} f_{ij}^{} - \sum_{j} f_{ji}^{} = \begin{cases} r_{kl} & \text{if } i = k \\ -r_{kl} & \text{if } i = l & \forall < k, l > \in K, \\ 0 & \text{otherwise} \end{cases}$$
Forcing constraints
$$f_{ij}^{k} + f_{ji}^{k} \le u_{ij} \qquad \forall \ (i,j) \in E, k \in K,$$

$$f_{ij}^{k}, f_{ji}^{k} \ge 0 \qquad \forall \ (i,j) \in E, k \in K$$

$$u_{ij} \in \{0,1\} \qquad \forall \ (i,j) \in E.$$

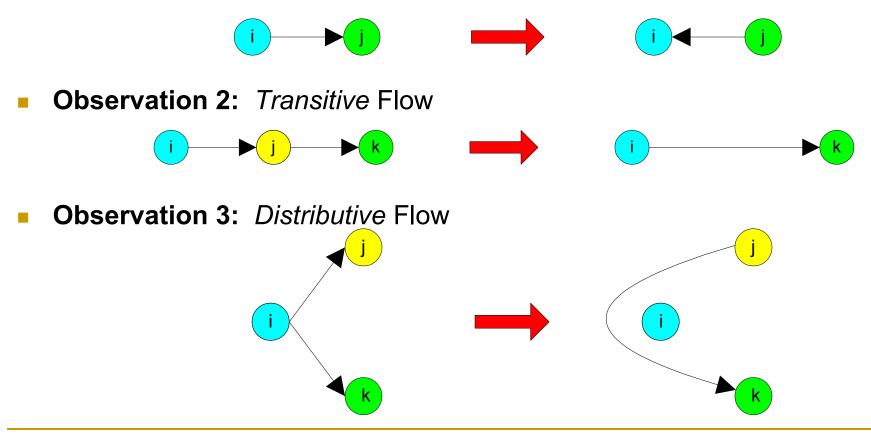
Equivalent Flow Formulation: Tree_Demand

• $k \in K$ = index of *commodity* with origin 1, destination k

$$\begin{bmatrix} TREE_DEMAND \end{bmatrix} \qquad Z_{TREE_DEMAND} = \min \sum_{(i,j) \in E} c_{ij} u_{ij}$$
subject to:

$$\sum_{j} f_{ij}^{k} - \sum_{j} f_{ji}^{k} = \begin{cases} r_{k} & \text{if } i = 1 \\ -r_{k} & \text{if } i = k \\ 0 & \text{otherwise} \end{cases} \forall k \in K,$$

$$0 & \text{otherwise} \end{cases}$$
Forcing constraints
$$f_{ij}^{k} + f_{ji}^{k} \leq u_{ij} \quad \forall (i,j) \in E, k \in K,$$


$$f_{ij}^{k}, f_{ji}^{k} \geq 0 \quad \forall (i,j) \in E, k \in K,$$

$$u_{ij} \in \{0,1\} \quad \forall (i,j) \in E.$$

O(n) commodities versus O(n²) commodities for the Full-Demand case

Equivalence of FULL_DEMAND and TREE_DEMAND Formulations

- Proof based on the following elementary observations:
- **Observation 1:** Symmetric Flow

Problem Complexity

Generalizes several classical optimization problems

- Traveling Salesman problem
- Facility Location problem
- Steiner Tree problem

NP-Hard problem

Literature Review

Exact (polyhedral) methods

- Grötschel et al.,1992, 1995, 1997
- Magnanti and Raghavan, 2002
- Chopra and Rao, 1994, Goemans, 1994 (Steiner tree)

Approximate (heuristic) approaches

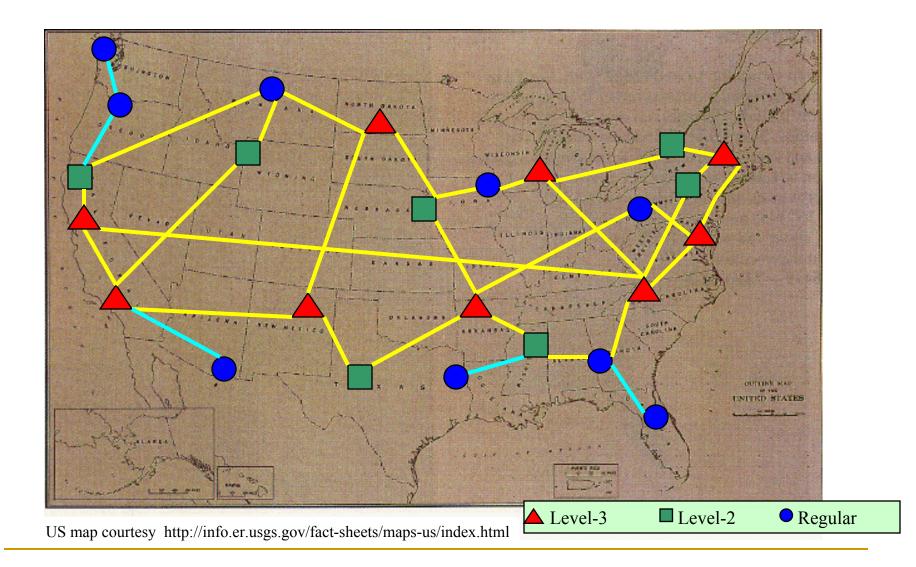
- Based on structural properties
 - Monma and Shallcross, 1989
 - Goemans and Bertsimas, 1993
 - Balakrishnan, Magnanti and Mirchandani, 2002
- Primal-dual
 - Goemans and Williamson, 1995
 - Williamson, Goemans, Mihail, Vazirani, 1995
 - Goemans, Goldberg, Plotkin, Shmoys, Tardos, Williamson, 1994
- Linear programming-based
 - Jain, 2001

Solution Approach

Generate tight lower bounds

Identify and add valid inequalities to increase LP relaxation value

Generate good heuristic solutions


- LP-rounding procedure
- If gap between upper and lower bound is small, stop.
 Else, possibly use branch-and-cut procedure

Strengthening the SND Model

"Upgrade" the node importance levels, if possible

- Upgrade the *Regular* nodes in the backbone (multi-connected) network to Critical nodes
- Upgrade the Steiner nodes in the access (backbone) network to Regular (Critical) nodes
- Strengthen the *forcing* constraints
- Add cardinality and (conditional) degree constraints

Survivable Network Topology

Extended Flow Model

$$t_k$$
 = Node-level upgrade variable

$= \min \sum_{(i,j) \in E} c_{ij} u_{ij}$
$ \begin{array}{c} \text{1f} i = 1 \\ \text{:} \\$
if $i = 1$ if $i = k$ $\forall k \in V \setminus \{1\}$, otherwise
ould wise
$\forall (i,j) \in E, l \in V \setminus \{1\},$
$\forall i \in V \setminus \{1\}$
$\forall (i, j) \in E, l \in V \setminus \{1\}, \\ \forall (i, j) \in E$
$\forall (i,j) \in E$

+ Additional node upgrade constraints on t_i

Node Upgrade constraints

U1 "Criticalize" Regular nodes based on Critical flows

 $t_r \ge (f_{rj}^c + f_{jr}^c) + 1 \qquad \forall r \in R, (r, j) \in E, c \in C$

U2 "Regularize" Steiner nodes

$$t'_{s} \ge u_{sj}$$
 $\forall s \in S, (s, j) \in E$

U3 "Criticalize" Steiner nodes based on Critical flows

$$t_{s} \ge (f_{sj}^{c} + f_{js}^{c}) + t_{s}^{'} \qquad \forall s \in S, (s, j) \in E, c \in C$$

U4 "Criticalize" Regular/Steiner nodes based on criticalized Regular/Steiner flows (bootstrap)

$$t_l \ge (f_{lj}^k + f_{jl}^k) + t_k - 1 \qquad \forall l, k \in S \cup R, l \neq k, (l, j) \in E$$

Node Upgrade (contd)

U5 "Criticalize" Regular nodes with two critical neighbors

 $t_r \ge u_{rc} + u_{rc} \forall r \in R; c, c' \in C, c \neq c'; (r, c), (r, c') \in E$

Bi-directional Forcing constraints

BF1 Regular-Regular Forcing constraints

$$f_{ij}^{r} + f_{ji}^{r'} \le u_{ij} + \frac{t_{r} + t_{r'}}{2} - 1 \qquad \forall r, r' \in R, r \neq r'; (i, j) \in E$$

$$f_{ji}^{r} + f_{ij}^{r'} \le u_{ij} + \frac{t_{r} + t_{r'}}{2} - 1 \qquad \forall r, r' \in R, r \neq r'; (i, j) \in E$$

BF2 Regular-Critical Forcing constraints

$$f_{ij}^{r} + f_{ji}^{r} + f_{ij}^{c} + f_{ji}^{c} \le u_{ij} + \frac{t_{r}}{2} \quad \forall r \in R, c \in C, (i, j) \in E$$

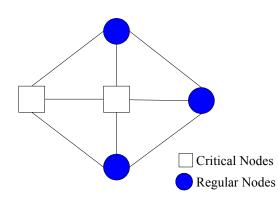
BF3 Regular-incident Forcing constraints

$$\begin{aligned} f_{rj}^{k} + f_{jr}^{k'} &\leq u_{rj} + t_{r} - 1 \quad \forall r \in R; k, k' \in R \cup S, k \neq k', r; (r, j) \in E \\ f_{jr}^{k} + f_{rj}^{k'} &\leq u_{rj} + t_{r} - 1 \quad \forall r \in R; k, k' \in R \cup S, k' \neq k, r; (r, j) \in E \end{aligned}$$

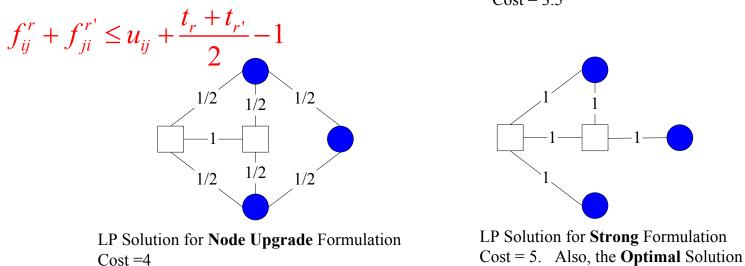
Design constraints

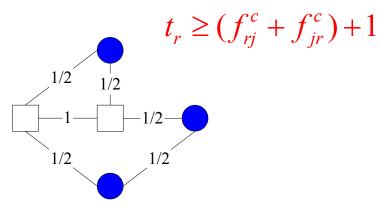
D1 Regular node degree constraints

$$\sum_{j} u_{rj} \ge \sum_{i} f_{ir}^{k} + 1 \qquad \forall r \in R, k \in V \setminus \{1\}$$


D2 Design cardinality constraints

$$\sum_{(i,j)\in E} u_{ij} \ge |C| + |R| + \sum_{s\in S} t'_{s}$$


Hierarchy of SND (Flow) Models


- Base Model: Tree_Flow
- Node Upgrade Model: Base model + criticalize regular nodes
- Strong Model: Other constraints
 - Extended Regular node upgrades
 - Steiner node upgrades
 - Strong bi-directional constraints
 - Degree and cardinality constraints

Comparison of Flow Formulation solutions

Problem Instance. All edge costs equal 1.

LP Solution for **Base** Formulation Cost = 3.5

Benefits of Strong SND Formulation

- The new node-upgrade models are stronger than the traditional cutset formulation.
 - provides better LP-based lower bounds
 - for some problem instances, strong LP gives optimal integer solution
 - improves computational performance of branch-and-bound algorithm
 - provides better, quicker heuristic solutions
- Goal: Evaluate computational effectiveness of strong formulation through empirical testing

Determining Upper Bound: Iterative LP-rounding heuristic

Step 1: Solve LP relaxation of SND model

Step 2: Round-up a fractional edge value u_{ii} to 1

- Selecting the fractional edge
 - max **u**_{ij}
 - max "utilization"
 - min incremental rounding cost per unit of flow
- Step 3: Re-solve LP relaxation with fixed edges If solution is integer-valued, Stop Else, repeat Step 2

Computational Testing

Objectives

- Develop and implement optimization-based methodology for SND problem
- Compare LP relaxations of Base and Enhanced SND models
- Evaluate the effectiveness of LP relaxation and heuristics
- Computational Platform
 - Dual Processor 933 MHz, 2 GB Ram; Windows 2000
 - □ LP solver: CPLEX Version 7.5

Test problems

- randomly generated, Euclidean
- parameters to vary network size and topology, distribution of node levels
- 3 instances per problem type

Computational Results: Summary

Problem Size	S-R-C node proportions	Percentage Gap (%)
	0-25-75	0.7%
	0-50-50	0.1%
# of Nodes: 20	0-75-25	0.0%
# of Arcs: 80	20-40-40	0.0%
# 01 AICS: 00	40-30-30	0.0%
	Average	0.16%
	# Strong LP closes gap	12 of 15
	0-25-75	0.0%
	0-50-50	0.9%
	0-75-25	0.6%
# of Nodes: 30	20-40-40	0.3%
# of Arcs: 120	40-30-30	0.4%
	Average	0.44%
	# Strong LP closes gap	9 of 15
	0-25-75	0.6%
# of Nodes: 40 # of Arcs: 160	0-50-50	0.3%
	0-75-25	0.6%
	20-40-40	2.5%
	40-30-30	0.2%
	Average	0.82%
	# Strong LP closes gap	3 of 15

Computational Results: LP effectiveness

	S-R-C node	Integrality Gap (%)		% Gap	
Problem Size	proportions	Base	Node Upgrade	Strong	Reduction
	0-25-75	3.1%	0.8%	0.7%	78.4%
# of Nodes: 20	0-50-50	13.0%	4.8%	0.1%	99.0%
# of Arcs: 80	0-75-25	26.4%	16.2%	0.0%	99.8%
# 01 Arcs: 00	20-40-40	10.9%	3.4%	0.0%	99.7%
	40-30-30	12.1%	5.8%	0.0%	100.0%
	0-25-75	4.5%	1.2%	0.0%	100.0%
# of Nodors 20	0-50-50	17.1%	9.2%	0.9%	93.9%
# of Nodes: 30 # of Arcs: 120	0-75-25	25.6%	15.4%	0.6%	97.0%
	20-40-40	14.6%	7.6%	0.3%	98.2%
	40-30-30	15.8%	7.8%	0.4%	97.1%
	0-25-75	4.2%	0.9%	0.6%	83.5%
# of Nodors 40	0-50-50	13.3%	2.2%	0.3%	97.2%
# of Nodes: 40 # of Arcs: 160	0-75-25	29.4%	17.6%	0.6%	97.4%
	20-40-40	14.1%	7.3%	2.5%	81.0%
	40-30-30	12.3%	6.2%	0.2%	97.6%
Average	0-25-75	4.0%	1.0%	0.4%	87.3%
	0-50-50	14.5%	5.4%	0.4%	96.7%
	0-75-25	27.1%	16.4%	0.4%	96.0%
	20-40-40	13.2%	6.1%	0.9%	93.0%
	40-30-30	13.4%	6.6%	0.2%	98.2%

Computational Results (contd)

Problem Size	Node Proportio	Percentage Gap (%)	
# of Nodes: 40 # of Arcs: 160	0-1-2-3 Problem	25-25-25-25	2.1%
# of Nodes: 100 # of Arcs: 400	0-1-2 Problem	50-0-50	0.9%

Using Base model, CPLEX required over 4 hours to solve 40 node problem instance

Heuristic performance

Problem Size	S-R-C node proportions	Heuristic Performance		
		Max u	Cost/Unit Flow	
	0-25-75	2 of 3	2 of 3	
	0-50-50	2 of 3	3 of 3	
# of Nodes: 20	0-75-25	3 of 3	3 of 3	
# of Arcs: 80	20-40-40	3 of 3	3 of 3	
	40-30-30	3 of 3	3 of 3	
	Total	13 of 15	14 of 15	
# of Nodes: 30 # of Arcs: 120	0-25-75	3 of 3	3 of 3	
	0-50-50	3 of 3	2 of 3	
	0-75-25	3 of 3	3 of 3	
	20-40-40	2 of 3	3 of 3	
	40-30-30	2 of 3	3 of 3	
	Total	13 of 15	14 of 15	
# of Nodes: 40 # of Arcs: 160	0-25-75	2 of 3	2 of 3	
	0-50-50	2 of 3	2 of 3	
	0-75-25	2 of 3	2 of 3	
	20-40-40	2 of 3	2 of 3	
	40-30-30	2 of 3	3 of 3	
	Total	10 of 15	11 of 15	

Conclusions

- Strong problem formulations are very effective for solving difficult SND problems
- LP-based heuristic, based on strong formulation, performs well
- Min incremental cost per unit of flow method is superior to max u_{ii} method
- Further work
 - More testing for higher connectivity problems
 - More comparison with IP solution times
 - Polyhedral results