Building Edge-Failure Resilient Networks

Chandra Chekuri Bell Labs Anupam Gupta Bell Labs ! CMU Amit Kumar Cornell ! Bell Labs Seffi Naor, Danny Raz Technion

Paper in IPCO 2002

Problem

- i Given a "primary" networkWant to add a "backup network"
 - s.t. we can route even if an edge fails

Restoration Model

- ï Single/Multiple Edge failures
- ï Local restoration
- ï Cost linear/concave in capacity

Edge Failures

Assume:

At most one edge fails at any time

- i Commonly used assumption in practice.
- i Ideas/algorithms can be generalized to multiple edge failures

Local Restoration

i If e = (i, j) with reservation u_e fails

Backup must be

- \tilde{n} a single path P(e) between i & j
- \tilde{n} P(e) has reservation at least u_e

Multiplexing/Sharing

Since only one edge can fail

n Different backup paths can share same backup capacity reserved.

Cheaper than taking union of P(e)

Why Local Restoration?

ï Quick and oblivious restoration (SONET Rings use local restoration)

i Single path for simplicity of routing (MPLS) and unsplittable demands.

Cost Model

Linear cost function: for edge e, cost c_e per unit bandwidth. Reserving capacity costs $c_e w_e$

- i Simplest case to understand.
- i In optical networks, capacity essentially unlimited, can buy additional capacity.
- i Algorithms work for concave costs.
- i Hard capacities result in difficult theoretical problems, might not be relevant in practice.

Backup Allocation

ï Given:

- \tilde{n} Graph G = (V,E)
- ${\rm \tilde{n}}~$ Edge costs ${\rm c_e}$ / unit bandwidth
- ${\rm \tilde{n}}~$ Primary network A with reservation ${\rm u}_{\rm e}$

ï Output:

 \tilde{n} Build backup network B s.t.

for every edge e in A there is path with reservation u_e between endpoints of e in B - {e}

$$\tilde{n}$$
 Cost = $\sum_{e} c_{e} w_{e}$

where w_e is backup reservation

Provisioning & Backup

ï Given:

- \tilde{n} Graph G = (V,E)
- $\tilde{n}~~\text{Edge}~\text{costs}~\text{c}_{e}$ / unit bandwidth
- ñ Pair-wise demand matrix D(i,j)

ï Output:

 \tilde{n} Primary network A to handle D(i,j)

&

Backup network B s.t.

there is path of capacity u_e between endpoints of e in B – {e}

$$\tilde{n}$$
 Cost = $\sum_{e} c_{e} (u_{e} + w_{e})$

where u_e is primary capacity w_e is backup capacity

Results

i <u>Theorem #1</u>

A constant-factor approximation for the *Backup Allocation* problem for linear cost model and single edge failures.

ï <u>Theorem #2</u>

Given α approx for provisioning, an O(α log n) approx for *P&B*. An O(log n) approximation algorithm for *Provisioning & Backup*.

Results (contd.)

- ï <u>Theorem #3</u>
 - If primary network is tree T and want T - {e} + P(e) also be tree
 - $\tilde{n}~$ As hard as group Steiner problem on trees
 - \tilde{n} If group Steiner tree on trees has an α approximation algorithm, we get an O(α) approximation.

Results (contd.)

Extensions

- i For linear cost model O(k) approximation for k edge failures.
- For concave costs O(k log u_{max}/u_{min}) approximation. In terms of n, O(k log n) approximation.

Related Work

- Capacitated Survivable Network Design. Hard capacities, emphasis on inequalities to solve exactly. [Bienstock,Muratore], [Balakrishnan, Magnanti, Sokol, Wang]. Many others.
- i Flow restoration instead of path restoration.[Brightwell,Oriolo,Shepherd], [Fleischer et al]
- i Backup allocation for tree networks in VPN hose model [Italiano,Rastogi,Yener].

Our model slightly different from earlier ones. Local restoration instead of end-to-end. Goal – provably good approximation algorithms.

Backup Allocation

ï Given:

- \tilde{n} Graph G = (V,E)
- $\tilde{n}~$ Primary network A with capacities $u_{\rm e}$
- \tilde{n} Cost per unit bandwidth on e is $c_{\rm e}$

ï Output:

ñ Backup network B such that For each edge e = (i,j) 2 A

there is path of capacity u_e between nodes i and j in B - {e}

ï Objective: minimize cost of B

Suppose ...

i All capacities u_e = 1

Want to build cheapest network B s.t.

For each (i,j) 2 A there is path between i and j in B - {e}

i Steiner network problem:

Want to build cheapest network **B** s.t.

For each (i,j) 2 A there are r_{ij} edge-disjoint paths between i and j in B

i [Jain 98] 2-approximation algorithm for SN

Algorithm

- i All capacities u_e = 1
- ï Algorithm:

 $B_1 \leftarrow SN \text{ with } r_{ij} = 1 \text{ for all } e = (i,j) 2 A.$

```
For all e = (i,j) 2 A

if e 2 B_1 then r'_{ij} = 2

else r'_{ij} = 1

(SN2)
```

(SN1)

Set cost of all edges in B₁ to 0

 $B_2 \leftarrow SN$ with demands r'_{ij}

Output B₁ [B₂

Correctness

ï <u>Feasibility</u>

If $e \notin B_1 \implies B_1 - \{e\}$ has a path

If e 2 $B_1 \implies B_2$ has two paths

 \Rightarrow B₂ - {e} has a path

i Approximation Bound

 $Opt(SN1) \cdot OPT$ $\Rightarrow cost(B_1) \cdot 2 OPT$

OPT [B_1 is feasible for SN2 (with cost OPT, due to zero costs) $\Rightarrow cost(B_2 - B_1) \cdot 2 OPT$

 \Rightarrow Approx bound of 4

An LP formulation

$$\label{eq:minsteady} \begin{array}{l} \text{Min } \sum c_{e} \; w_{e} \\ \text{s.t.} \\ \text{w supports unit-flow between i & j in E - {e} \\ \text{for all } e = (i,j) \; 2 \; A \end{array}$$

Theorem:

The integrality gap of this LP is 4.

General u_e?

- i Scaling + previous algorithm
- ï Algorithm:

 $A(k) = \{ e 2 A \mid 2^{k} \cdot u_{e} < 2^{k+1} \}$

For all e 2 A(k), set $u_{\rho} = 2^{k+1}$

Independently for all k

Run previous algorithm on A(k)

Assign capacity 2^{k+1} on chosen edges B(k) 16 approximation solution. Can be improved to $4e \approx 10.87$ approx.

Same algorithm works for concave costs, approximation bound $O(\log u_{max}/u_{min})$

An LP formulation

Min
$$\sum c_e w_e$$

s.t.
w supports u_e-flow between i & j in E - {e}
for all e = (i,j) 2 A

Theorem:

The integrality gap of this LP is $\Theta(\log n)$.

Simultaneous Provisioning & Backup

Model?

- ï How do we specify demands?
- ï Two common models:

Point-to-point demand matrix D(u,v) \Rightarrow shortest-path routing optimal

VPN upper bounds
 ⇒ constant-factor approximation
 [Gupta et al 01]

Possible other models...

Results

<u>Theorem</u>

Given α-approx algorithm for provisioning in some model:

we get $O(\alpha \log n)$ approx algorithm for backup & provisioning in that model

Hence:

O(log n)-approx for Point-to-Point, VPN...

A two-step procedure

Algorithm:

Use provisioning algorithm to get A (bandwidth allocation = u_e)

Use the previous backup algorithm acting on A to get backup network B

(bandwidth allocation = w_e)

Analysis

- i Let u* and w* be an optimal solution OPT
- <u>Claim</u>:
 u + u* + w* is a feasible solution for the LP
- ï Assuming this claim is true:

 $cost(A) \cdot \alpha cost(u^*) \cdot \alpha OPT$

LP value $\cdot \operatorname{cost}(A) + \operatorname{cost}(u^* + w^*)$ $\cdot (\alpha + 1) \operatorname{OPT}$

 $cost(B) \cdot O(log n) LP \cdot O(\alpha log n) OPT$

Analysis (contd.)

Proof Sketch (that u + u* + w* is a valid LP sol'n):

i If e = (p,q) goes down:

"Send back" u_e amount of flow using e back to the terminals using e

Now since u* + w* forms a edge-failure resilient network: can use this to send "returned" flow in the desired fashion.

Tightness

Suppose D(r, leaf) = 1 for each leafThen step #1 can create the blue tree

From previous slide: OPT $_{,} \Omega(d^2 2^d)$

But if we chose green star instead
 Red Star as backup costs d2^d

Future Work

- ï Improved approximations.
- Online models. Demand pairs arrive over time. Design primary and backup paths given existing primary and backup networks.
- ï Empirical evaluation.