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Problem

ï Given a “primary” network
  Want to add a “backup network” 

  s.t. we can route even if an edge fails
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Restoration Model

ï Single/Multiple Edge failures

ï Local restoration

ï Cost linear/concave in capacity



Assume:

At most one edge fails at any time

ï Commonly used assumption in 
practice. 

ï Ideas/algorithms can be generalized 
to multiple edge failures

Edge Failures



Local Restoration

ï If e = (i,j) with reservation ue fails

Backup must be 
ñ a single path P(e) between i & j

ñ P(e) has reservation at least ue
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Multiplexing/Sharing

Since only one edge can fail
ñ Different backup paths can share

same backup capacity reserved.

Cheaper than taking union of P(e)

5
3

4
2

4

4

5

5
5 5

4
2

21
3

5

5



Why Local Restoration?

ï Quick and oblivious restoration 
(SONET Rings use local restoration)

ï Single path for simplicity of routing 
(MPLS) and unsplittable demands.



Cost Model

Linear cost function: for edge e, cost ce    

 per unit bandwidth. Reserving capacity

 costs ce we  

ï Simplest case to understand.

ï In optical networks, capacity essentially 
unlimited, can buy additional capacity.

ï Algorithms work for concave costs.

ï Hard capacities result in  difficult theoretical 
problems, might not be relevant in practice.



ï Given:
ñ Graph G = (V,E) 

ñ Edge costs ce / unit bandwidth

ñ Primary network A with reservation ue

ï Output:
ñ Build backup network B s.t. 

    for every edge e in A there is path with     
reservation ue between endpoints of e     
in B – {e}

ñ Cost =  ∑e ce we 

where we is backup reservation

Backup Allocation



ï Given:
ñ Graph G = (V,E) 

ñ Edge costs ce / unit bandwidth

ñ Pair-wise demand matrix D(i,j)

ï Output:
ñ Primary network A to handle D(i,j)

& 
Backup network B s.t. 

there is path of capacity ue between
endpoints of e in B – {e}

ñ Cost =  ∑e ce (ue + we) 

where ue is primary capacity

we is backup capacity

Provisioning & Backup



ï Theorem #1

A constant-factor approximation for 
the Backup Allocation problem for 
linear cost model and single edge 
failures.

ï Theorem #2

    Given α approx for provisioning, an 
O(α log n) approx for P&B.
An O(log n) approximation algorithm 
for Provisioning & Backup.  

Results



ï Theorem #3

If primary network is tree T
  and want T – {e} + P(e) also be tree

ñ As hard as group Steiner problem on trees

ñ If group Steiner tree on trees has 
an α approximation algorithm, 
we get an O(α) approximation.

Results (contd.)



Extensions

ï For linear cost model O(k) 
approximation for k edge failures.

ï For concave costs O(k log umax/umin) 
approximation. In terms of n,          
O(k log n) approximation.

Results (contd.)



Related Work

ï Capacitated  Survivable Network Design. Hard 
capacities, emphasis on inequalities to solve 
exactly. [Bienstock,Muratore], [Balakrishnan, 
Magnanti, Sokol, Wang]. Many others.

ï Flow restoration instead of path restoration. 
[Brightwell,Oriolo,Shepherd], [Fleischer et al]

ï Backup allocation for tree networks in VPN 
hose model [Italiano,Rastogi,Yener].

Our model slightly different from earlier ones.
Local restoration instead of end-to-end.
Goal – provably good approximation algorithms.



ï Given:
ñ Graph G = (V,E) 
ñ Primary network A with capacities ue

ñ Cost per unit bandwidth on e is ce

ï Output:
ñ Backup network B such that
 For each edge e = (i,j) 2 A 

there is path of capacity ue between
nodes i and j in B – {e}

ï Objective: minimize cost of B

Backup Allocation



ï All capacities ue = 1

Want to build cheapest network B s.t. 

For each (i,j) 2 A 
there is path between i and j in B – {e}

ï Steiner network problem:

Want to build cheapest network B s.t. 

For each (i,j) 2 A 

there are rij edge-disjoint paths 

between i and j in B

ï [Jain 98] 2-approximation algorithm for SN

Suppose …



ï All capacities ue = 1

ï Algorithm:

B1 ← SN with rij = 1 for all e = (i,j) 2 A.

For all e = (i,j) 2 A

if e 2 B1 then r’ij = 2

else r’ij = 1

Set cost of all edges in B1 to 0

B2 ← SN with demands r’ij 

Output B1 [  B2 

Algorithm

(SN1)

(SN2)



ï Feasibility

If e ∉  B1     ⇒  B1 – {e} has a path

If e 2 B1         ⇒  B2 has two paths

                        ⇒  B2 – {e} has a path

ï Approximation Bound

Opt(SN1)  ∙   OPT 

⇒ cost(B1) ∙  2 OPT

OPT [  B1 is feasible for SN2 

       (with cost OPT, due to zero costs)

⇒ cost(B2 – B1) ∙  2 OPT

⇒ Approx bound of 4

Correctness



Min  ∑ ce we 

  s.t. 
w supports unit-flow between i & j in E – {e} 

         for all e = (i,j) 2 A 

  Theorem:

The integrality gap of this LP is 4.

An LP formulation



ï Scaling + previous algorithm

ï Algorithm:

A(k)  =  { e 2 A |  2k ∙  ue < 2k+1 }

 

For all e 2 A(k), set ue = 2k+1 

Independently for all k 
Run previous algorithm on A(k)

Assign capacity 2k+1 on chosen edges B(k)

General ue ?

16 approximation solution. Can be improved to  
4e ≈ 10.87 approx.

Same algorithm works for concave costs, 
approximation bound O(log umax/umin) 



Min  ∑ ce we 
  s.t. 

w supports ue-flow between i & j in E – {e} 

         for all e = (i,j) 2 A 

   Theorem:

The integrality gap of this LP is Θ(log n).

An LP formulation



Simultaneous
Provisioning & Backup



Model?

ï How do we specify demands?

ï Two common models:

Point-to-point demand matrix D(u,v)
⇒ shortest-path routing optimal

VPN upper bounds
⇒ constant-factor approximation 

        [Gupta et al 01]

Possible other models…



  Theorem

Given α-approx algorithm for 
provisioning in some model:

we get O(α log n) approx algorithm for 
backup & provisioning in that model

Hence:
O(log n)-approx for Point-to-Point, VPN…

Results



  Algorithm:

Use provisioning algorithm to get A

(bandwidth allocation = ue)

Use the previous backup algorithm acting on 
A to get backup network B

(bandwidth allocation = we)

A two-step procedure



ï Let u* and w* be an optimal solution OPT

ï Claim: 
u + u* + w* is a feasible solution for the LP

ï Assuming this claim is true: 

cost(A) ∙  α cost(u*) ∙  α OPT

LP value ∙  cost(A) + cost(u* + w*)
        ∙  (α + 1) OPT

cost(B) ∙  O(log n) LP ∙  O(α log n) OPT

Analysis



Proof Sketch (that u + u* + w* is a valid LP sol’n):

ï If e = (p,q) goes down:

“Send back” ue amount of flow using e back 
to the terminals using e

Now since u* + w* forms a edge-failure 
resilient network: can use this to send  
“returned” flow in the desired fashion.

Analysis (contd.)

e

p q



ï Suppose D(r, leaf) = 1 for each leaf
Then step #1 can create the blue tree

From previous slide: OPT ¸  Ω(d2 2d)

ï But if we chose green star instead

Red Star as backup costs d2d

Tightness

1 1 1 1
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ce = 1

ce = d



Future Work

ï Improved approximations.

ï Online models. Demand pairs arrive 
over time. Design primary and backup 
paths given existing primary and 
backup networks.

ï Empirical evaluation.


