
Building Edge-Failure
Resilient Networks

Chandra Chekuri
Bell Labs

Anupam Gupta
Bell Labs ! CMU

Amit Kumar
Cornell ! Bell Labs

Seffi Naor, Danny Raz
Technion

Paper in IPCO 2002

Problem

ï Given a “primary” network
 Want to add a “backup network”

 s.t. we can route even if an edge fails

5
4

2

5 21
3

5
3

4
2

4

4

5

5
5 5

4
2

21
3

5

5

4
2

4

4

5

5
5 5

4
2

21
3

5

5

3
3

5

1

Restoration Model

ï Single/Multiple Edge failures

ï Local restoration

ï Cost linear/concave in capacity

Assume:

At most one edge fails at any time

ï Commonly used assumption in
practice.

ï Ideas/algorithms can be generalized
to multiple edge failures

Edge Failures

Local Restoration

ï If e = (i,j) with reservation ue fails

Backup must be
ñ a single path P(e) between i & j

ñ P(e) has reservation at least ue

5
3

4
2

4

4

5

5
5 5

4
2

21
3

5

5

ji

5
3

4
2

4

4

5

5
5 5

4
2

21
3

5

5

i j

Multiplexing/Sharing

Since only one edge can fail
ñ Different backup paths can share

same backup capacity reserved.

Cheaper than taking union of P(e)

5
3

4
2

4

4

5

5
5 5

4
2

21
3

5

5

Why Local Restoration?

ï Quick and oblivious restoration
(SONET Rings use local restoration)

ï Single path for simplicity of routing
(MPLS) and unsplittable demands.

Cost Model

Linear cost function: for edge e, cost ce

 per unit bandwidth. Reserving capacity

 costs ce we

ï Simplest case to understand.

ï In optical networks, capacity essentially
unlimited, can buy additional capacity.

ï Algorithms work for concave costs.

ï Hard capacities result in difficult theoretical
problems, might not be relevant in practice.

ï Given:
ñ Graph G = (V,E)

ñ Edge costs ce / unit bandwidth

ñ Primary network A with reservation ue

ï Output:
ñ Build backup network B s.t.

 for every edge e in A there is path with
reservation ue between endpoints of e
in B – {e}

ñ Cost = ∑e ce we

where we is backup reservation

Backup Allocation

ï Given:
ñ Graph G = (V,E)

ñ Edge costs ce / unit bandwidth

ñ Pair-wise demand matrix D(i,j)

ï Output:
ñ Primary network A to handle D(i,j)

&
Backup network B s.t.

there is path of capacity ue between
endpoints of e in B – {e}

ñ Cost = ∑e ce (ue + we)

where ue is primary capacity

we is backup capacity

Provisioning & Backup

ï Theorem #1

A constant-factor approximation for
the Backup Allocation problem for
linear cost model and single edge
failures.

ï Theorem #2

 Given α approx for provisioning, an
O(α log n) approx for P&B.
An O(log n) approximation algorithm
for Provisioning & Backup.

Results

ï Theorem #3

If primary network is tree T
 and want T – {e} + P(e) also be tree

ñ As hard as group Steiner problem on trees

ñ If group Steiner tree on trees has
an α approximation algorithm,
we get an O(α) approximation.

Results (contd.)

Extensions

ï For linear cost model O(k)
approximation for k edge failures.

ï For concave costs O(k log umax/umin)
approximation. In terms of n,
O(k log n) approximation.

Results (contd.)

Related Work

ï Capacitated Survivable Network Design. Hard
capacities, emphasis on inequalities to solve
exactly. [Bienstock,Muratore], [Balakrishnan,
Magnanti, Sokol, Wang]. Many others.

ï Flow restoration instead of path restoration.
[Brightwell,Oriolo,Shepherd], [Fleischer et al]

ï Backup allocation for tree networks in VPN
hose model [Italiano,Rastogi,Yener].

Our model slightly different from earlier ones.
Local restoration instead of end-to-end.
Goal – provably good approximation algorithms.

ï Given:
ñ Graph G = (V,E)
ñ Primary network A with capacities ue

ñ Cost per unit bandwidth on e is ce

ï Output:
ñ Backup network B such that
 For each edge e = (i,j) 2 A

there is path of capacity ue between
nodes i and j in B – {e}

ï Objective: minimize cost of B

Backup Allocation

ï All capacities ue = 1

Want to build cheapest network B s.t.

For each (i,j) 2 A
there is path between i and j in B – {e}

ï Steiner network problem:

Want to build cheapest network B s.t.

For each (i,j) 2 A

there are rij edge-disjoint paths

between i and j in B

ï [Jain 98] 2-approximation algorithm for SN

Suppose …

ï All capacities ue = 1

ï Algorithm:

B1 ← SN with rij = 1 for all e = (i,j) 2 A.

For all e = (i,j) 2 A

if e 2 B1 then r’ij = 2

else r’ij = 1

Set cost of all edges in B1 to 0

B2 ← SN with demands r’ij

Output B1 [B2

Algorithm

(SN1)

(SN2)

ï Feasibility

If e ∉ B1 ⇒ B1 – {e} has a path

If e 2 B1 ⇒ B2 has two paths

 ⇒ B2 – {e} has a path

ï Approximation Bound

Opt(SN1) ∙ OPT

⇒ cost(B1) ∙ 2 OPT

OPT [B1 is feasible for SN2

 (with cost OPT, due to zero costs)

⇒ cost(B2 – B1) ∙ 2 OPT

⇒ Approx bound of 4

Correctness

Min ∑ ce we

 s.t.
w supports unit-flow between i & j in E – {e}

 for all e = (i,j) 2 A

 Theorem:

The integrality gap of this LP is 4.

An LP formulation

ï Scaling + previous algorithm

ï Algorithm:

A(k) = { e 2 A | 2k ∙ ue < 2k+1 }

For all e 2 A(k), set ue = 2k+1

Independently for all k
Run previous algorithm on A(k)

Assign capacity 2k+1 on chosen edges B(k)

General ue ?

16 approximation solution. Can be improved to
4e ≈ 10.87 approx.

Same algorithm works for concave costs,
approximation bound O(log umax/umin)

Min ∑ ce we
 s.t.

w supports ue-flow between i & j in E – {e}

 for all e = (i,j) 2 A

 Theorem:

The integrality gap of this LP is Θ(log n).

An LP formulation

Simultaneous
Provisioning & Backup

Model?

ï How do we specify demands?

ï Two common models:

Point-to-point demand matrix D(u,v)
⇒ shortest-path routing optimal

VPN upper bounds
⇒ constant-factor approximation

 [Gupta et al 01]

Possible other models…

 Theorem

Given α-approx algorithm for
provisioning in some model:

we get O(α log n) approx algorithm for
backup & provisioning in that model

Hence:
O(log n)-approx for Point-to-Point, VPN…

Results

 Algorithm:

Use provisioning algorithm to get A

(bandwidth allocation = ue)

Use the previous backup algorithm acting on
A to get backup network B

(bandwidth allocation = we)

A two-step procedure

ï Let u* and w* be an optimal solution OPT

ï Claim:
u + u* + w* is a feasible solution for the LP

ï Assuming this claim is true:

cost(A) ∙ α cost(u*) ∙ α OPT

LP value ∙ cost(A) + cost(u* + w*)
 ∙ (α + 1) OPT

cost(B) ∙ O(log n) LP ∙ O(α log n) OPT

Analysis

Proof Sketch (that u + u* + w* is a valid LP sol’n):

ï If e = (p,q) goes down:

“Send back” ue amount of flow using e back
to the terminals using e

Now since u* + w* forms a edge-failure
resilient network: can use this to send
“returned” flow in the desired fashion.

Analysis (contd.)

e

p q

ï Suppose D(r, leaf) = 1 for each leaf
Then step #1 can create the blue tree

From previous slide: OPT ¸ Ω(d2 2d)

ï But if we chose green star instead

Red Star as backup costs d2d

Tightness

1 1 1 1

22

4
ce = 1

ce = d

Future Work

ï Improved approximations.

ï Online models. Demand pairs arrive
over time. Design primary and backup
paths given existing primary and
backup networks.

ï Empirical evaluation.

