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What is meshing?
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#® Meshing is the decomposition of a geometric domain into
basic building blocks.
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Meshing is ubiquitous

o .

#® Numerical solutions to partial differential equations

o -

Topological Representations for Meshes — p.3/2



Meshing is ubiquitous

o .

#® Numerical solutions to partial differential equations
# (Geographic Information Systems

o -

Topological Representations for Meshes — p.3/2



Meshing is ubiquitous

o .

#® Numerical solutions to partial differential equations
# (Geographic Information Systems
# Data interpolation

o -

Topological Representations for Meshes — p.3/2



Cells

o .

® A d-cell is a region homeomorphic to the open d-ball
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Cell Complex
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Why Barycentric Subdivisions?
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# Provide an efficient and elegant way to access
topological and order information by means of switch
operators
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Numbered Simplicial Sets

o .

# Barycentric subdivisions of cell complexes are special
cases of numbered simplicial sets.
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Numbered Simplicial Sets

f # Barycentric subdivisions of cell complexes are special T
cases of numbered simplicial sets.

# A numbered d-simplex is a simplex whose vertices are
uniquely labeled with numbers between 0 and d.
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Numbered Simplicial Sets

o .

#® A numbered d-simplicial set is a collection numbered
simplices glued along (d — 1)-faces with compatible
labels.

o -

Topological Representations for Meshes — p.9/2



Numbered Simplicial Sets

o .

# A numbered d-simplicial set is a collection numbered
simplices glued along (d — 1)-faces with compatible
labels.

o -

Topological Representations for Meshes — p.9/2



Faces of a Simplicial Set

1




Not a Cell Complex
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Recognizing Cell Complexes
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Recognizing Cell Complexes
Easy in two and three dimensions. T

Rather complicated in four dimensions (Poincare’s
conjecture).

Not known in five dimensions.

It is recursively unsolvable for dimensions six and
higher.
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So what do we do?
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# Allow for building blocks that are more general than
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So what do we do?

o .

# Allow for building blocks that are more general than
cells.

# Retain as many nice properties from cell complexes as
possible.
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Explicit Models

o .

# Faces of different dimensions are represented explicitly
together with their adjacency relations.
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Explicit Models

o .

# Faces of different dimensions are represented explicitly
together with their adjacency relations.

o Typically represented as a DAG.
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Implicit Models
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# There is only one basic class of objects.
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Tutte’s Representation of Surfaces

-

An abstract set S of crosses and three permutations P,
and ¢ of S satistying:

6? = ¢? = I and ¢ = ¢b.
X, 0X, ¢X and 09X are all distinct for all crosses X.
(PO)? =1.

The orbits of X and X under P are distinct for all
crosses X.

°

© o o o
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Example

<—2—
P3X| | |POX PquX‘
P26X X ¢ X
P2X 60X 0p X
P39X| | | PX

-
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Torus
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N -dimensional Generalized Maps

o .

o Extend Tutte’s representation to higher dimensional
objects.
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N -dimensional Generalized Maps

f # Extend Tutte’s representation to higher dimensional T
objects.
# Allow for boundaries and non-manifold objects.

® Faces need not be cells.
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N -dimensional Generalized Maps

® Atuple G=(D,ag,...,as) Where D is an set of darts
and the «;’s are involutions.



N -dimensional Generalized Maps

-

® Atuple G=(D,ag,...,as) Where D is an set of darts
and the «;’s are involutions.

9 ozz-aj:ajaiwhenever0§i<z’+2§jgd.
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Maps and Numbered Simplicial Sets

o .

# Every map corresponds to a numbered simplicial set.




Maps and Numbered Simplicial Sets

o .

#® Not every numbered simplicial set corresponds to a
map.




Removing Undesirable Cases

o .

#® good configurations

0
1
0 1 0
° o ° 0

# bad configurations

L.—.
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Additional Constraints
f ® o is fixed point free for 0 <i < d T

® Foranydartcand0<i<d, ifa€e<ag,...,a;_1>and
B E< ®it1,-..,aq9 >thenaf(o) = o iff a(c) = ¢ and

Blo) = 0.
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