Approximation Algorithms for Closest Metric Problems

Kedar Dhamdhere

Outline of the talk

- Motivation
- Evolutionary trees
- Problem definition \& previous work
- Our results
- Conclusion

Motivation

Evolutionary tree

Evolutionary trees

All species evolved from one ancestor (root of the tree).
Length of the edges proportional to amount of time passed.

Finding evolutionary tree

- In practice, evolutionary time can be estimated using DNA sequences.
- We get a table of pairwise distances.

	Human	Chimp	Lemur
Human	0	2	4
Chimp	2	0	4
Lemur	4	4	0

Finding evolutionary tree

Input:
Distance matrix

	Human	Chimp	Lemur
Human	0	2	4
Chimp	2	0	4
Lemur	4	4	0

Output:
Evolutionary tree

Human Chimp Lemur

Tree metric

Human Chimp Lemur

$\operatorname{dist}_{T}(u, v)=$ length of the (unique) shortest path in the tree

Note: $\operatorname{dist}_{T}(u, v) \leq \operatorname{dist}_{T}(u, w)+\operatorname{dist}_{T}(w, v)$

Fitting tree to input

Given $n \times n$ matrix D representing distances

\[

\]

Find a tree T :
$\operatorname{dist}_{T}(i, j)=D[i, j]$

Fitting tree to input

[Waterman-Smith-Singh-Beyer '77] $O\left(n^{2}\right)$-time algorithm to find a tree that fits the input data

In practice, no tree fits the data exactly

Find the closest tree metric

Outline of the talk

- Motivation
- Evolutionary trees
- Problem definition \& previous work
- A special case - line metric
- Results
- Conclusion

Closest tree metric

Given $n \times n$ matrix D representing distances

Find a tree T closest to the input D

Closest tree metric

- What does closest mean?
- Let $T_{n \times n}$ be the matrix of distances in the output tree.
- L_{p} norm: $\quad L_{p}(T, D)=\left(\sum_{i, j}|T[i, j]-D[i, j]|^{p}\right)^{1 / p}$

Important cases:

- $p=2$: sum of squared errors
- $p=1$: total error
- $p=\infty: \max _{i, j}\{|T[i, j]-D[i, j]|\}$

Previous work

- [Day '87], [Wareham '93] NP-hardness
- [Farach-Kannan-Warnow '93] Polynomial time algorithm for a special case (ultrametric)
- [Saitu-Nei '87], [Felsenstein '93], [Olsen et al '94], [Swofford '98] Hill-climbing heuristics
- [Dress-Kruger '87], [Strimmer-Haesler '96], [Huson-NettlesWarnow '99] Divide \& conquer
- [Lundy '85], [Baker '97], [Salter-Pearl '00] Simulated Annealing
- [Yang-Rannala '97], [Mau-Newton-Larget '99], [Li-Pearl-Doss '00] Monte Carlo Markov Chain

Approximation algorithms

- An approximation algorithm for an NP-hard problem finds a near optimal solution quickly
- Runs in polynomial time
- Has a performance guarantee on quality of solution
- Performance Ratio: Worst-case performance ratio ρ of an approximation algorithm A for a minimization problem

$$
=\max _{\text {input } I} \frac{\text { Value of solution }_{A}(I)}{\text { Value of optimal solution }(I)}
$$

Previous work

- [Agrawala-Bafna-Farach-Narayanan-Patterson-Thorup '95] 3-approximation for finding closest tree under L_{∞} norm
- Open: Approximate the closest tree metric under L_{l} norm

Previous work

- [Agrawala-Bafna-Farach-Narayanan-Patterson-Thorup '95] 3-approximation for finding closest tree under L_{∞} norm
- Open: Approximate the closest tree metric under L_{l} norm
- Special Case: Find closest line metric under L_{l} norm

Line metric

- $\operatorname{dist}(x, y)=|x-y|$
- e.g. $\operatorname{dist}(b, d)=7$

$$
\operatorname{dist}(a, c)=5
$$

Closest line metric

Given $n \times n$ matrix D representing distances

Convert to distances in line: $A_{n \times n}$

Minimize: $L_{p}(D, A)$

Previous work

[Hästad-Ivansson-Lagergren 98]
2-approximation for closest line metric under L_{∞} norm

- Application to physical mapping of chromosomes
- Better approximation (e.g. 2- δ) is unlikely

Closest line metric $\left(\mathrm{L}_{1}\right)$

Given $n \times n$ matrix D representing distances

Convert to distances in line: $A_{n \times n}$
a
$a\left(\begin{array}{cccc}a & c & d \\ b \\ c & 2 & 4 & 9 \\ 2 & 0 & 4 & 6 \\ 4 & 4 & 0 & 5 \\ 9 & 6 & 5 & 0\end{array}\right)$

Minimize:
$L_{l}(A, D)=\sum_{i, j}|D(i, j)-A(i, j)|$
\square

This example: $L_{l}(A, D)=8$

Closest line metric

Our results:

$O(\log n)$-approximation algorithm for closest line metric under L_{l} norm
$O(\sqrt{\log n})$-approximation for sum of squared errors (L_{2} norm) using same technique
$O\left(\log ^{1 / p} n\right)$-approximation for L_{p} norm

Approximation for closest line metric

- Modify optimal solution to make it simpler (v-fixed)
- Distances of all vertices from v are same as those in the input
- Best v-fixed solution at most 3 times worse
- Approximate best v-fixed solution
- Use multi-cut algorithm as a subroutine to get $O(\log n)$ approximation ratio

Open Questions

- Can we improve approximation: $O(\log n)$ to $O(1)$?
- Replace multi-cut subroutine by something else?
- Approximation for tree metrics under L_{p} norm?

Monitoring Web Information Sources

- Dynamic nature of web
- 23\% of all pages change every day
- Monitoring information sources
- Commuter updates: traffic and weather conditions
- Alerts on baseball scores, stock portfolios
- Scheduling problem
- How to schedule the crawling of web sources?
- Maximize "timeliness" \& "completeness" of information

Joint work with Sandeep Pandey, Christopher Olston

Credits

Thanks to ALADDIN for funding this work!

