Approximation Algorithms for Closest Metric Problems

Kedar Dhamdhere

24th May 2004

Outline of the talk

- Motivation
 - Evolutionary trees
- Problem definition & previous work
- Our results
- Conclusion

Motivation

Evolutionary tree

24th May 2004

All species evolved from one ancestor (root of the tree).

Length of the edges proportional to amount of time passed.

Finding evolutionary tree

- In practice, evolutionary time can be estimated using DNA sequences.
 - We get a table of pairwise distances.

	Human	Chimp	Lemur
Human	0	2	4
Chimp	2	0	4
Lemur	4	4	0

Finding evolutionary tree

Input: Distance matrix Output: Evolutionary tree

	Human	Chimp	Lemur
Human	0	2	4
Chimp	2	0	4
Lemur	4	4	0

Tree metric

 $dist_T(u,v) =$ length of the (unique) shortest path in the tree

Note: $dist_T(u,v) \le dist_T(u,w) + dist_T(w,v)$

24th May 2004

Fitting tree to input

Given $n \times n$ matrix Drepresenting distances

Find a tree T:

 $dist_T(i, j) = D[i, j]$

Fitting tree to input

[Waterman-Smith-Singh-Beyer '77] $O(n^2)$ -time algorithm to find a tree that fits the input data

In practice, no tree fits the data exactly

Find the *closest* tree metric

Outline of the talk

- Motivation
 - Evolutionary trees
- Problem definition & previous work
 - A special case line metric
- Results
- Conclusion

Closest tree metric

Given $n \times n$ matrix Drepresenting distances

Find a tree *T* closest to the input *D*

С

b

a

d

Closest tree metric

- What does closest mean?
 - Let $T_{n \times n}$ be the matrix of distances in the output tree.
 - L_p norm: $L_p(T, D) = (\sum_{i,j} /T[i,j] D[i,j]/p)^{1/p}$

Important cases:

- p = 2 : sum of squared errors
- p = 1 : total error
- $p = \infty : \max_{i,j} \{ |T[i,j] D[i,j]| \}$

Previous work

- [Day '87], [Wareham '93] NP-hardness
- [Farach-Kannan-Warnow '93] Polynomial time algorithm for a special case (ultrametric)
- [Saitu-Nei '87], [Felsenstein '93], [Olsen et al '94], [Swofford '98] Hill-climbing heuristics
- [Dress-Kruger '87], [Strimmer-Haesler '96], [Huson-Nettles-Warnow '99] Divide & conquer
- *[Lundy '85], [Baker '97], [Salter-Pearl '00]* Simulated Annealing
- [Yang-Rannala '97], [Mau-Newton-Larget '99], [Li-Pearl-Doss '00] Monte Carlo Markov Chain

Approximation algorithms

- An *approximation algorithm* for an NP-hard problem finds a near optimal solution quickly
 - Runs in polynomial time
 - Has a performance guarantee on quality of solution
- Performance Ratio: Worst-case performance ratio ρ of an approximation algorithm A for a minimization problem

 $= \max_{\text{input } I} \frac{\text{Value of solution}_A(I)}{\text{Value of optimal solution}(I)}$

Previous work

- [Agrawala-Bafna-Farach-Narayanan-Patterson-Thorup '95] 3-approximation for finding closest tree under L_∞ norm
- Open: Approximate the closest tree metric under L₁ norm

Previous work

- [Agrawala-Bafna-Farach-Narayanan-Patterson-Thorup '95] 3-approximation for finding closest tree under L_∞ norm
- Open: Approximate the closest tree metric under L₁ norm
- Special Case: Find closest line metric under L_1 norm

Line metric

•
$$dist(x,y) = |x - y|$$

• e.g.
$$dist(b,d) = 7$$

 $dist(a,c) = 5$

Closest line metric

Given $n \times n$ matrix D representing distances

Convert to distances in line: $A_{n \times n}$

Minimize: $L_p(D,A)$

 \mathbf{O}

24th May 2004

Previous work

[Hästad-Ivansson-Lagergren 98]

2-approximation for closest line metric under L_∞ norm

- Application to physical mapping of chromosomes
- Better approximation (e.g. $2-\delta$) is unlikely

Closest line metric (L_1)

Closest line metric

Our results:

 $O(\log n)$ -approximation algorithm for closest line metric under L_1 norm

 $O(\sqrt{\log n})$ -approximation for sum of squared errors (L_2 norm) using same technique

 $O(\log^{1/p} n)$ -approximation for L_p norm

Approximation for closest line metric

- Modify optimal solution to make it simpler (v-fixed)
 - Distances of all vertices from v are same as those in the input
 - Best *v*-fixed solution at most 3 times worse
- Approximate best *v*-fixed solution
 - Use multi-cut algorithm as a subroutine to get
 O(log n) approximation ratio

Open Questions

- Can we improve approximation: $O(\log n)$ to O(1)?
 - Replace multi-cut subroutine by something else?
- Approximation for tree metrics under L_{p} norm?

Monitoring Web Information Sources

- Dynamic nature of web
 - 23% of all pages change every day
- Monitoring information sources
 - Commuter updates: traffic and weather conditions
 - Alerts on baseball scores, stock portfolios
- Scheduling problem
 - How to schedule the crawling of web sources?
 - Maximize "timeliness" & "completeness" of information

Joint work with Sandeep Pandey, Christopher Olston

Credits

Thanks to **ALADDIN** for funding this work!