A Bézier-Based Approach to Unstructured Moving Meshes

Todd Phillips
David Cardoze
Gary Miller
Motivation

• Meshing
Motivation

- Meshing
- Sangria Project - Develop simulation techniques for RBC flow.
Motivation

• Meshing

• Sangria Project - Develop simulation techniques for RBC flow.

• Moving Meshes to Track Boundaries Simplify Numerical Schemes.
Motivation

• Meshing
• Sangria Project - Develop simulation techniques for RBC flow.
• Moving Meshes to Track Boundaries
 Simplify Numerical Schemes.
• Curved Meshes for more accurate displacements.
Bézier Curves

- A Bézier curve of degree n is determined by $n + 1$ control values.
Bézier Curves

- A Bézier curve of degree n is determined by $n + 1$ control values.
- General Bézier Curves

$$B(t) = \sum_{0 \leq i \leq n} B^n_i(t) p_i,$$ where

$$B^n_i(t) = \binom{n}{i} t^i (1 - t)^{n-i}.$$
Bézier Curves

- A Bézier curve of degree n is determined by $n + 1$ control values.
- General Bézier Curves
 \[
 B(t) = \sum_{0 \leq i \leq n} B^n_i(t)p_i, \text{ where} \]
 \[
 B^n_i(t) = \binom{n}{i} t^i (1 - t)^{n-i}. \]
- Quadratic Bézier Curves
 \[
 B(t) = (1 - t)^2 p_0 + 2t(1 - t)p_1 + t^2 p_2
 \]
Bézier Curves (Picture)

• General Bézier Curves
Bézier Curves (Picture)

• General Bézier Curves

• Quadratic Bézier Curves
Why use Bézier Curves?

- Polynomial curves give \textbf{EASY} evaluation
Why use Bézier Curves?

- Polynomial curves give **EASY** evaluation
- Bézier curves give **EASY** subdivision
 (deCasteljau Algorithm)
Why use Bézier Curves?

- Polynomial curves give EASY evaluation
- Bézier curves give EASY subdivision (deCasteljau Algorithm)
- Endpoint and Tangent interpolation property
Why use Bézier Curves?

- Polynomial curves give EASY evaluation
- Bézier curves give EASY subdivision (deCasteljau Algorithm)
- Endpoint and Tangent interpolation property
- Convex Hull property
Why use Bézier Curves?

- Polynomial curves give EASY evaluation
- Bézier curves give EASY subdivision (deCasteljau Algorithm)
- Endpoint and Tangent interpolation property
- Convex Hull property
- Affine invariance property
Why use Bézier Curves?

- Polynomial curves give **EASY** evaluation
- Bézier curves give **EASY** subdivision (deCasteljau Algorithm)
- Endpoint and Tangent interpolation property
- Convex Hull property
- Affine invariance property
- Variation Diminishing property
Bézier Triangles

- A Bézier Simplex of degree n in dimension d is a polynomial in d variables determined by a control net with $O(n^d)$ vertices.
Bézier Triangles

• A Bézier Simplex of degree n in dimension d is a polynomial in d variables determined by a control net with $O(n^d)$ vertices.

• A quadratic Bézier triangle in two dimensions is determined by 6 control points.
Bézier Triangles

- A Bézier Simplex of degree \(n \) in dimension \(d \) is a polynomial in \(d \) variables determined by a control net with \(O(n^d) \) vertices.

- A quadratic Bézier triangle in two dimensions is determined by 6 control points.

- Importance of Control Net
Bézier Triangles

• A Bézier Simplex of degree n in dimension d is a polynomial in d variables determined by a control net with $O(n^d)$ vertices.

• A quadratic Bézier triangle in two dimensions is determined by 6 control points.

• Importance of Control Net

• Analogues in Higher Dimension (Bézier Tetrahedra)
Mesh Hierarchy

- Curved Mesh

![Curved Mesh Diagram](image)
Mesh Hierarchy

- Curved Mesh

- Control Mesh
Mesh Hierarchy

- Curved Mesh

- Control Mesh

- Logical Mesh
Mesh Quality

- What is Mesh Quality?
Mesh Quality

- What is Mesh Quality?
- Mesh Size (Number of Elements)
Mesh Quality

- What is Mesh Quality?
- Mesh Size (Number of Elements)
- Mesh Grading (Avoid Drastic Element Size Changes)
Mesh Quality

- What is Mesh Quality?
- Mesh Size (Number of Elements)
- Mesh Grading (Avoid Drastic Element Size Changes)

Element Quality
Dictated by Interpolation Theory
Curved Elements Problematic for Theory
Mesh Quality

- What is Mesh Quality?
- Mesh Size (Number of Elements)
- Mesh Grading (Avoid Drastic Element Size Changes)

• Element Quality
 Dictated by Interpolation Theory
 Curved Elements Problematic for Theory

• Mesh Size and Mesh Grading are ’macro-quality’
Bézier Triangle Quality

• Linear Triangle Quality: No Skinny Angles
Bézier Triangle Quality

- Linear Triangle Quality: No Skinny Angles
- Maintain Quality *Logical* Mesh
Bézier Triangle Quality

- Linear Triangle Quality: No Skinny Angles
- Maintain Quality *Logical* Mesh
- Higher-Order Quality
Bézier Triangle Quality

• Linear Triangle Quality: No Skinny Angles
• Maintain Quality *Logical* Mesh
• Higher-Order Quality
Bézier Triangle Quality

- Linear Triangle Quality: No Skinny Angles
- Maintain Quality *Logical* Mesh
- Higher-Order Quality

- Quality of Triangles in the Control Mesh affect quality of the Curved Triangle.
Bézier Triangle Quality

- Linear Triangle Quality: No Skinny Angles
- Maintain Quality Logical Mesh
- Higher-Order Quality

- Quality of Triangles in the Control Mesh affect quality of the Curved Triangle.
- Maintain Quality Control Mesh
Bézier Triangle Quality

- Linear Triangle Quality: No Skinny Angles
- Maintain Quality Logical Mesh
- Higher-Order Quality

- Quality of Triangles in the Control Mesh affect quality of the Curved Triangle.
- Maintain Quality Control Mesh
- First things first, second things second.
Mesh Cleaning

• Given a mesh of poor quality
Mesh Cleaning

- Given a mesh of poor quality
- Given a sizing function
Mesh Cleaning

- Given a mesh of poor quality
- Given a sizing function
- Coarsen the Mesh to assure keep output size low
Mesh Cleaning

- Given a mesh of poor quality
- Given a sizing function
- Coarsen the Mesh to assure keep output size low
- Refine the Mesh for Size and for Linear Quality
Mesh Cleaning

- Given a mesh of poor quality
- Given a sizing function
- Coarsen the Mesh to assure keep output size low
- Refine the Mesh for Size and for Linear Quality
- Smooth the Mesh for Higher-Order Quality
Mesh Cleaning

- Given a mesh of poor quality
- Given a sizing function
- Coarsen the Mesh to assure keep output size low
- Refine the Mesh for Size and for Linear Quality
- Smooth the Mesh for Higher-Order Quality
- *Localized* Operations
Mesh Cleaning

• Given a mesh of poor quality
• Given a sizing function
• Coarsen the Mesh to assure keep output size low
• Refine the Mesh for Size and for Linear Quality
• Smooth the Mesh for Higher-Order Quality
• *Localized* Operations
• Operations that generalize well to 3-D
Edge Flips

- A quadratic edge flip can be implemented as four edge flips in the control mesh. More in higher-order cases.
Edge Flips

- A quadratic edge flip can be implemented as four edge flips in the control mesh. More in higher-order cases.
- Edge flips can be used as an atomic topological operation for many algorithms.
Edge Flips

- A quadratic edge flip can be implemented as four edge flips in the control mesh. More in higher-order cases.
- Edge flips can be used as an atomic topological operation for many algorithms.
- Use edge flips to make the logical mesh Delaunay.
Bézier Mesh Coarsening

• Use traditional linear mesh coarsening algorithms. Identify a set of points to be removed.
Bézier Mesh Coarsening

- Use traditional linear mesh coarsening algorithms. Identify a set of points to be removed.
- Use Deviller’s algorithm for incremental vertex removal.
Bézier Mesh Refinement

- Identify poorly sized triangles.
Bézier Mesh Refinement

• Identify poorly sized triangles.
• Identify poor logical triangles.
Bézier Mesh Refinement

• Identify poorly sized triangles.
• Identify poor logical triangles.
• Use Ruppert Refinement to insert the circumcenters of logical triangles.
Curve Smoothing

• Identify 'overly curved' triangles using special metrics and smooth each edge.
Curve Smoothing

• Identify ’overly curved’ triangles using special metrics and smooth each edge.
• Many metrics can be very easily computed for Bézier triangles.
Curve Smoothing

- Identify ‘overly curved’ triangles using special metrics and smooth each edge.
- Many metrics can be very easily computed for Bézier triangles.
- Identify star of control point in the control mesh.
Curve Smoothing

- Identify ‘overly curved’ triangles using special metrics and smooth each edge.
- Many metrics can be very easily computed for Bézier triangles.
- Identify star of control point in the control mesh.
- Use local linear mesh improvement algorithms to determine a new position.
Simulation Process

• Push Bézier mesh forward using some displacement field.
Simulation Process

- Push Bézier mesh forward using some displacement field.
- Use Edge flips to enforce Delaunay property on the logical mesh.
Simulation Process

- Push Bézier mesh forward using some displacement field.
- Use Edge flips to enforce Delaunay property on the logical mesh.
Simulation Process

- Push Bézier mesh forward using some displacement field.
- Use Edge flips to enforce Delaunay property on the logical mesh.
- Solve Equations for next timestep. Rinse. Repeat.
Demos

- Pure Convection
- Convection Diffusion
- Navier-Stokes
Recap

- Use Bézier curves and triangles as a basis for curved meshes
Recap

• Use Bézier curves and triangles as a basis for curved meshes
• Maintain linear quality and higher-order quality of curved elements
Recap

• Use Bézier curves and triangles as a basis for curved meshes
• Maintain linear quality and higher-order quality of curved elements
• Use extensions of known linear algorithms to ensure ‘macro-quality’ of the mesh
Future Considerations

- 3-D. Most of this generalizes to higher dimension.
Future Considerations

• 3-D. Most of this generalizes to higher dimension.

• Open questions about curved element quality
Future Considerations

• 3-D. Most of this generalizes to higher dimension.
• Open questions about curved element quality
• Implement Higher-Order Bézier Elements
Future Considerations

• 3-D. Most of this generalizes to higher dimension.
• Open questions about curved element quality
• Implement Higher-Order Bézier Elements
• Implement More Exotic Elements.
Future Considerations

- 3-D. Most of this generalizes to higher dimension.
- Open questions about curved element quality
- Implement Higher-Order Bézier Elements
- Implement More Exotic Elements.
- Questions?