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Introduction

A generic problem:

How well can an n-node graph G be
“approximated” by a spanning tree H?

Three versions of the problem:

Minimize the congestion c(G,H), dilation
d(G,H), or condition number κf(G,H)

Applications: packet routing, linear systems

Upper bounds: c(G,H), d(G,H) ≤ O(n) and
κf(G,H) ≤ O(n1+o(1)) [Boman/Hendrickson]
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Introduction

Folklore results:

Congestion is largest when G has large
separators: c(G,H) ≥ Ω(n) when G is an
expander

Dilation is largest when G has long cycles:
d(G,H) ≥ Ω(n) when G is a simple cycle

Main result:

Condition number is largest when G is a
square mesh: κf(G,H) ≥ Ω(n1−o(1))
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Embeddings and Preconditioners

A graph embedding ϕ : G ↪−→ H...

Maps nodes in G to nodes in H

Maps edges in G to paths in H

Measures of embedding quality:

Congestion cϕ(G,H): maximum number of
H-paths in the image of ϕ sharing a single
H-edge

Dilation dϕ(G,H): maximum length of an
H-path in the image of ϕ
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Embeddings and Preconditioners

The routing view of an embedding:

G is guest (demands), H is host (links)

Congestion is bottleneck, dilation is delay

The packet routing problem:

Step 1: Path selection (fixed by embedding)

Step 2: Motion schedule (model-dependent)

Solvable in time Θ(cϕ(G,H) + dϕ(G,H)) in a
particular store-and-forward model
[Leighton/Maggs/Rao]
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Embeddings and Preconditioners

Laplacian matrices:

Start with an n-node graph G = (V,E)

Form an n × n matrix: Gij = −1 if (i, j) ∈ EG,
Gij = 0 if (i, j) /∈ EG, and Gii = degree(i)

G is symmetric positive semidefinite, with
nullspace j (the all-ones vector)

M -matrices:

Generalization of Laplacian matrices

Arise in FDM/FEM for elliptic PDEs
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Embeddings and Preconditioners

A generalized eigenvalue problem:

Gx = λHx where G,H are Laplacian

max λf(G,H): maximum λ with x ⊥ j

min λf(G,H): minimum λ with x ⊥ j

A generalized condition number:

κf(G,H) = maxx⊥j
xT Gx
xT Hx

· maxx⊥j
xT Hx
xT Gx

=

(max λf(G,H)) · (min λf(G,H))−1



Embeddings and Preconditioners

A generalized eigenvalue problem:

Gx = λHx where G,H are Laplacian

max λf(G,H): maximum λ with x ⊥ j

min λf(G,H): minimum λ with x ⊥ j

A generalized condition number:

κf(G,H) = maxx⊥j
xT Gx
xT Hx

· maxx⊥j
xT Hx
xT Gx

=

(max λf(G,H)) · (min λf(G,H))−1



Embeddings and Preconditioners

A generalized eigenvalue problem:

Gx = λHx where G,H are Laplacian

max λf(G,H): maximum λ with x ⊥ j

min λf(G,H): minimum λ with x ⊥ j

A generalized condition number:

κf(G,H) = maxx⊥j
xT Gx
xT Hx

· maxx⊥j
xT Hx
xT Gx

=

(max λf(G,H)) · (min λf(G,H))−1



Embeddings and Preconditioners

A generalized eigenvalue problem:

Gx = λHx where G,H are Laplacian

max λf(G,H): maximum λ with x ⊥ j

min λf(G,H): minimum λ with x ⊥ j

A generalized condition number:

κf(G,H) = maxx⊥j
xT Gx
xT Hx

· maxx⊥j
xT Hx
xT Gx

=

(max λf(G,H)) · (min λf(G,H))−1



Embeddings and Preconditioners

Electrical network view:

G = (V,E) is a resistive circuit

Nodes are junctions/terminals

Edges are branch conductors

Energy interpretation:

The power law:
EG(x) = xTGx =

∑

(i,j)∈EG
(xi − xj)

2

Rayleigh quotients compare power
dissepation
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Embeddings and Preconditioners

The classical conjugate gradient method:

Solve Gx = b iteratively, using a
preconditioner H

Iteration cost: matrix-vector multiply involving
G, direct system-solve involving H

Iteration count: O(
√

κf(G,H))

Tradeoff: H should be sparser than G but
approximate G well

Example: H is a spanning tree of G
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Embeddings and Preconditioners

Bounding the condition number from above:

κf(G,H) ≤ O(minϕ cϕ(G,H) · dϕ(G,H))
[Gremban]

Bounding the condition number from below:

Congestion-times-dilation is strong, but false

Congestion-plus-dilation is easy, but weak

For the simple square mesh, novel
techniques are needed
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Expander:

bounded-degree, with linear-size separators

large congestion, small dilation, large
condition number

Simple cycle:

connected, degree-two

small congestion, large dilation, large
condition number
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Expanders and Cycles

Congestion for expander:

Find single-edge separator of H into U , V \ U

Separator of G into U , V \ U has size Ω(n)

Hence, cϕ(G,H) ≥ Ω(n) for any ϕ

Condition number for expander:

Set potential x at U , V \ U to 0, 1

EG(x), EH(x) count separator edges

Hence, κf(G,H) ≥ Ω(n)
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Common in practice (e.g., in FDM/FEM)
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Find one-edge separator e of H into U , V \U

Separator of G into U , V \ U has size Ω(
√

n)

Hence, cϕ(G,H) ≥ Ω(
√

n) for any ϕ

Dilation for square mesh:

Separator of G into U , V \ U contains at least
one edge at distance Ω(

√
n) from e
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Decompose H into subtrees, recursively

Look at the shapes of the subtrees

Bound κf(G,H) by finding a particular shape
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This partitions S into d/s subtrees of
mesh-diameter s
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Lemma A (for well-shaped subtrees):

Suppose edges e, f cut subtree S ′ into
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Let G have p edges from L to R, and let the
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Then κf(G,H) ≥ Ω(pq)
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Example: p, q ≥ Ω(
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Proof of theorem:

Fix ε > 0, choose s1(ε) << d = Θ(
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Start with a subtree S of mesh-diameter d,
and perform a tree decomposition with
parameter s1(ε)

If no subtree is ill-shaped, apply Lemma A to
conclude that κf(G,H) ≥ Ω(n1−o(1))
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