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Dynamic Trees

The Dynamic Trees Problem

• Dynamic trees: 

Goal: maintain an n-vertex forest that changes over time.

• link(v,w): creates an edge between vertices v and w.

• cut(v,w): deletes edge (v,w).

Application-specific data associated with edges and/or vertices.

• Concrete examples:

Find minimum-weight edge in the path between any two vertices.

Add a value to all edges in the path between two vertices.

Find total weight of all vertices in a subtree.

• O(log n) time per operation.

map arbitrary tree onto balanced tree.
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Dynamic Trees

Contractions: Rake and Compress

• Proposed by Miller and Reif [1985] (parallel setting).

• Rake: 

Eliminates a degree-one vertex.

Collapses edge onto successor.

• Assumes circular order of edges.

• Compress:

Eliminates a degree-two vertex.

Combines two edges into one.

• Original edges and resulting edge are clusters.

Dynamic Trees

Contractions: Rake and Compress

• Contraction:

Series of rakes and compresses;

Reduces a tree to a single cluster (edge).

• Top tree embodies a contraction:

Direct access only to root cluster.

User defines what information to store in parent.

Any order of rakes and compresses is “right”:

• root will have the correct information.

• Balanced: updates in O(log n) time.

• Alstrup et al. [1997] use topology trees: high overhead. 

• We show a direct implementation.
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Dynamic Trees

• Consider some unrooted tree:

Representation

Dynamic Trees

• Pick a degree-one vertex as root, direct all edges towards it.

• We call this a unit tree (rooted tree with degree-one root).

Representation

Dynamic Trees

• Pick a root path:

starts at some leaf;

ends at the root.

Representation

Dynamic Trees

• Represent the root path as a binary tree:

Leaves: base clusters (original edges).

Internal nodes: compress clusters.
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Dynamic Trees

• What if the degree of a vertex is not two?

Recursively represent each subtree rooted at the vertex.

• At most two because of circular order.
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Dynamic Trees

• What if the degree of a vertex is not two?

Recursively represent each subtree rooted at the vertex.

Before vertex is compressed, rake subtree onto adjacent cluster.
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Dynamic Trees

• Representation:

Up to four children per node (up to two foster children).

Meaning: up to two rakes followed by a compress.

Example: Ne = compress(rake(X, ce), rake(Z, ef)) = cf
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Dynamic Trees

• How does the recursive representation work?

Must represent subtrees rooted at the root path.
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Dynamic Trees

• How does the recursive representation work?

Must represent subtrees rooted at the root path.

Each subtree is a sequence of unit trees.
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• How does the recursive representation work?

Must represent subtrees rooted at the root path.

Each subtree is a sequence of unit trees.

Represent each unit tree recursively.
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Dynamic Trees

• How does the recursive representation work?

Must represent subtrees rooted at the root path.

Each subtree is a sequence of unit trees.

Represent each unit tree recursively.

Build a binary tree of rakes.

Representation
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Dynamic Trees

Representation

• Interpretations:

User interface: tree contraction. 

• sequence of rakes and compresses;

• a single tree;

• similar to topology trees and RC-trees.

Implementation: path decomposition.

• maximal edge-disjoint paths;

• hierarchy of binary trees (rake trees/compress trees).

• similar to ST-trees.
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Dynamic Trees

Self-Adjusting Top Trees

• Topmost compress tree represents the root path.

Top tree interface allows the user to access the root path only.

expose makes a node v part of the root path (and/or changes root).

• Main tools: splay and splice.
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Dynamic Trees

Self-Adjusting Top Trees

• Splaying: series of rotations within a rake/compress subtree:

keeps subtree “balanced” (in the amortized sense);

brings vertex to the root of the subtree.
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Dynamic Trees

Self-Adjusting Top Trees

• Splice: changes the partition of the original tree into paths.
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Dynamic Trees

Self-Adjusting Top Trees

• expose(v) in 3 passes:

1. Splay within each binary tree between v and the root;

2. perform a series of splices;

3. splay within the final tree.

• Main result: O(log n) amortized time.
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Dynamic Trees

• link(v,w): first expose v and w, then rearrange appropriately.

Links

xw

Nw

bwC D

uv

Nv

avA B

xw

Nw

bw

C

D uv

Nv

av

A

B

v

a

u

B

A

w

x

b

C

D

vw

link(v,w)

Dynamic Trees

Hidden Details

• Exposing the vertex is slightly different from changing the root.

• Top tree nodes represent edges; must also associate with vertices.

• Degree of vertices exposed matters (special cases).

• Left-right relation must be relaxed in compress trees.

• Must call user-defined functions in the appropriate order.
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Dynamic Trees

Practical Considerations

• Compress node:

Actually represents up to 3 clusters.

Could be implemented as one cluster = one node.

• Splaying and splicing get slightly more complicated.

• Special cases (application-dependent):

No circular order:

• Compress nodes have at most 3 (not 4) children.

• Simpler splices.

Trivial rakes: essentially ST-Trees.

• No rake trees.

• No pointers to “middle children” (dashed edges).

Dynamic Trees

Further Work

• Worst-case variant?

• Careful experimental study:

Top trees tend to be slower than ET-trees and ST-trees, but:

• More generic:
– bounded/unbounded degrees;

– subtree/path operations;
– circular order around vertices.

• Much easier to adapt to different applications;

• Easier to reason about.

How does it compare to RC-trees?


