On the Complexity of Optimal *K***-Anonymity**

Ryan Williams (with Adam Meyerson)

PODS 2004

What is *k*-anonymity?

- Strategy for releasing large amounts of personal data, while still protecting privacy of individuals
- Originally proposed by Latanya Sweeney
- Level of privacy protection depends on a parameter k

What is *k*-anonymity?

In particular, data fields are either generalized or suppressed

- Generalized: e.g. "age 35" becomes "age 20-40"
- *Suppressed:* e.g. "age 35" is withheld entirely

In our work, we deal only with optimal k-anonymity via suppression

Optimal *k***-anonymity:** Given a list of *records*, **minimize** the number of *fields* suppressed, such that for each record r, there are k - 1 other records that are *indistinguishable* from r.

Example of *k***-anonymity**

Consider the query "Who had an x-ray at this hospital yesterday?" and the following response:

first	last	age	race
Harry	Stone	34	Afr-Am
John	Reyser	36	Cauc
Beatrice	Stone	34	Afr-Am
John	Delgado	22	Hisp

• Want to 2-anonymize this data (using suppression) before release

Example of *k***-anonymity**

Consider the query "Who had an x-ray at this hospital yesterday?" and the following response:

first	last	age	race
*	Stone	34	Afr-Am
John	*	*	*
*	Stone	34	Afr-Am
John	*	*	*

• Rows 1 and 3 are indistinguishable, 2 and 4 are indistinguishable

Overview of Talk

- *NP*-hardness of optimal *k*-anonymity
 - For a sufficiently large alphabet, k -anonymity is hard for any $k \geq 3$
- Approximation of *k*-anonymity
 - Can find a solution that suppresses at most $O(k \log k)$ times the optimum number of fields
 - Two $O(k \log k)$ -approximation algorithms: a simple one with $O(n^{2k})$ time, and a more complicated one with $O(n^3)$ time (the latter improves the second algorithm in the paper)

Hardness of *k***-anonymity**

Optimal *k***-anonymity:** Given a list of records, minimize the number of fields suppressed, such that for each record r, there are k - 1 other records that are indistinguishable from r.

We will give a reduction from k-dimensional perfect matching to the above problem

k-dimensional perfect matching: Given a collection C of *k*-sets over a universe U, is there a subset $S \subseteq C$ such that:

- Every $x \in U$ is in some k-set s in S
- The sets of S are disjoint; i.e. for every $s_1, s_2 \in S, s_1 \cap s_2 = \emptyset$

Note: When k = 2, this is polynomial time solvable (but the problem is *NP*-hard for $k \ge 3$)

From 3-D perfect matching to 3-anonymity

Given an instance of 3-dim. perfect matching:

$$U = \{x_1, x_2, \dots, x_n\}, C = \{s_1, \dots, s_m\}$$
 such that
For all $j = 1, \dots, m, s_j \subseteq U$ and $|s_j| = 3$,

Define a table *T* **of records where:**

- Records (rows) correspond to $x_i \in U$
- Attributes (columns) correspond to $s_j \in C$

More precisely,

$$T[i, j] := 0$$
 if $x_i \in s_j$,
i otherwise.

We then ask: *does the optimal 3-anonymized solution suppress at most* $n \cdot (m-1)$ *fields?*

Example of reduction in action

 $U = \{1, 2, 3, 4, 5, 6\}$ and $C = \{\{1, 2, 3\}, \{1, 4, 5\}, \{4, 5, 6\}, \{2, 3, 6\}\}$

The reduction results in the table:

	$\{1,2,3\}$	$\{1, 4, 5\}$	$\{4, 5, 6\}$	$\{2, 3, 6\}$
1	0	0	1	1
2	0	2	2	0
3	0	3	3	0
4	4	0	0	4
5	5	0	0	5
6	6	6	0	0

Perfect Matching 1

3-D perfect matching { $\{1, 2, 3\}, \{4, 5, 6\}$ } corresponds to the 3-anonymized table:

	$\{1, 2, 3\}$	$\{1, 4, 5\}$	$\{4, 5, 6\}$	$\{2, 3, 6\}$
1	0	*	*	*
2	0	*	*	*
3	0	*	*	*
4	*	*	0	*
5	*	*	0	*
6	*	*	0	*

Perfect Matching 2

3-D perfect matching $\{ \{1, 4, 5\}, \{2, 3, 6\} \}$ corresponds to:

	$\{1, 2, 3\}$	$\{1, 4, 5\}$	$\{4, 5, 6\}$	$\{2, 3, 6\}$
1	*	0	*	*
2	*	*	*	0
3	*	*	*	0
4	*	0	*	*
5	*	0	*	*
6	*	*	*	0

Some observations:

- If a set *s_j* doesn't appear in the perfect matching, then its column is all *'s
- If s_j does appear, then 3 entries in its column are not *'s

Why does this work?

(Recall m = number of sets in collection = number of columns in table)

• A group of 3 rows needs at least $3 \cdot (m-1)$ stars in order for the group to become indistinguishable

Follows from T[i, j] := i **if** $x_i \notin s_j$

A group of 3 rows corresponds to the elements of a set s_j if and only if exactly 3 ⋅ (m − 1) stars are required

The rows have 0 in the *j*th column, differ in other columns

• Thus there is a perfect matching *iff* for every group of 3 rows, exactly $3 \cdot (m-1)$ stars are necessary

 $\implies n \cdot (m-1)$ stars in total

So there is a 3-D perfect matching *if* and only *if* the number of entries suppressed in the optimal 3-anonymized solution is $n \cdot (m - 1)$

Some special cases

Let n be the number of records.

What if...

• Number of attributes per record (number of columns) is at most $\log(n)$?

Reduction doesn't work; resulting subcase of k-dimensional perfect matching is easy – Sweeney has announced a polytime algorithm

• Number of possible field entries (alphabet) is constant?

Recently resolved in a paper submitted to ESA 2004 – it suffices to have a ternary alphabet

$O(k \log k)$ -approximation for k-anonymity

We will approximately solve a related problem, which we call *k*-minimum diameter sum

Given a collection of vectors $S \subseteq \Sigma^m$, the *diameter of* S is

 $d(S) := \max_{u,v \in S} h(u,v),$

where h is Hamming distance

(d(S)) is the diameter of the smallest Hamming ball enclosing S)

The *k*-minimum diameter sum problem: Given $V \subseteq \Sigma^m$, find a partition Π of *V* into sets *S* with $|S| \in [k, 2k - 1]$, so that $\sum_{S \in \Pi} d(S)$ is minimized

Minimum diameters and *k***-anonymity**

Theorem. Suppose partition Π of V is an α -approximation to k-minimum diameter sum. Then the following is a $3k\alpha$ -approximation algorithm for optimally k-anonymizing V:

For each $S \in \Pi$ and for all j = 1, ..., m, if there are $u, v \in S$ with $u[j] \neq v[j]$, set w[j] := * for all $w \in S$.

Sketch: For any partition Π and any $S \in \Pi$,

• At least d(S) coordinates (out of m) need to be suppressed to make the vectors of S identical

 \implies at least $|S| \cdot d(S) \ge kd(S)$ stars are required to anonymize S

• Every pair $\{u, v\} \subseteq S$ has $d(u, v) \leq d(S)$, so we only need to insert at most d(S) stars per pair

 \implies the algorithm uses *at most* $\binom{|S|}{2} \cdot d(S) \leq 3k^2 d(S)$ stars to anonymize S

Approximating Minimum Diameter Sum

One line summary: Reduce to Set Cover, convert cover into partition

Set Cover: Given a collection C of sets from a universe U and a weight function $w : C \to \mathbb{N}$, find $S \subseteq C$ where $\sum_{S \in S} w(S)$ is minimized and every $x \in U$ appears in some $S \in S$

Outline of reduction

- Let C be collection of S ⊆ V such that k ≤ |S| ≤ 2k 1. Find a set cover S for C using the standard greedy (1 + ln 2k)-approximation that repeatedly chooses the most "cost-effective" set S
- For any pair of sets $S, T \in S$, both containing some $v \in V$,
 - if one of S or T is larger than k, remove v from it
 - if not, |S| = |T| = k, so replace S and T with $S \cup T$ in S

Claim: The resulting partition has a diameter sum that is no more than the diameter sum of S

Caveat!

Building the collection C of all subsets with cardinality in the range [k, 2k - 1] takes $O(n^{2k-1})$ time

- This can be skirted with a little geometric trickery
- Still get an $O(k \log k)$ approximation, but now $O(n^3)$ time

Outline of faster algorithm

Instead of using the whole collection C, use a much smaller one, which is reconstructed at each iteration of the greedy set cover algorithm

Each iteration i of the set cover approximation algorithm adds a new set to its collection

For j = 1, ..., 2k - 1 and $v \in V$, define $S_{i,j,v}$ to be the set of j nearest neighbors of v (including v) that are not yet included in the cover at iteration i; if j < k, also include the k - j covered vectors closest to vLet C_i be the collection of $S_{i,j,v}$ at iteration i

- C_i is "re-built" (in $O(kn^2)$ time) at each iteration of the greedy algorithm, as more vectors become covered
- Greedy algorithm runs in O(n) iterations, so $O(kn^3)$ time

Claim: This gives a $2(1 + \ln 2k)$ -approximation to minimum diameter sum, *i.e.* a $6k(1 + \ln 2k)$ -approximation to k-anonymity

Recent improvements (not in the paper)

Aggarwal, Feder, Kentapadi, Motwani, Panigrahy, Thomas, and Zhu

(*a.k.a. a* bunch of people at Stanford) have shown:

- Still *NP*-hard for a ternary alphabet
- O(k)-approximation for k-anonymity
- 1.5-approximation for 2-anonymity, and 2-approximation for 3-anonymity

This paper may appear in ESA04; stay tuned

Interesting directions (not in the paper)

• The **maximum disclosure** problem: *k*-anonymizing, but now we want to maximize the total number of fields *not* suppressed – how well can one approximate?

We (that is, I) conjecture there is an O(k)-approximation

• The costly suppression problem: Suppose you can only suppress at most F fields among all the records – what's the maximum k such that you can still k-anonymize the records?

NP-hard, but I've no idea what approximation is like