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What is k-anonymity?

• Strategy for releasing large amounts of personal data, while still

protecting privacy of individuals

• Originally proposed by Latanya Sweeney

• Level of privacy protection depends on a parameter k
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What is k-anonymity?
In particular, data fields are either generalized or suppressed

• Generalized: e.g. “age 35” becomes “age 20-40”

• Suppressed: e.g. “age 35” is withheld entirely

In our work, we deal only with optimal k-anonymity via suppression

Optimal k-anonymity: Given a list of records, minimize the number of

fields suppressed, such that for each record r, there are k − 1 other

records that are indistinguishable from r.
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Example of k-anonymity

Consider the query “Who had an x-ray at this hospital yesterday?” and the

following response:

first last age race

Harry Stone 34 Afr-Am

John Reyser 36 Cauc

Beatrice Stone 34 Afr-Am

John Delgado 22 Hisp

• Want to 2-anonymize this data (using suppression) before release
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Example of k-anonymity

Consider the query “Who had an x-ray at this hospital yesterday?” and the

following response:

first last age race

* Stone 34 Afr-Am

John * * *

* Stone 34 Afr-Am

John * * *

• Rows 1 and 3 are indistinguishable, 2 and 4 are indistinguishable
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Overview of Talk
• NP -hardness of optimal k-anonymity

– For a sufficiently large alphabet, k-anonymity is hard for any

k ≥ 3

• Approximation of k-anonymity

– Can find a solution that suppresses at most O(k log k) times the

optimum number of fields

– Two O(k log k)-approximation algorithms: a simple one with

O(n2k) time, and a more complicated one with O(n3) time

(the latter improves the second algorithm in the paper)
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Hardness of k-anonymity
Optimal k-anonymity: Given a list of records, minimize the number of

fields suppressed, such that for each record r, there are k − 1 other

records that are indistinguishable from r.

We will give a reduction from k-dimensional perfect matching to the

above problem

k-dimensional perfect matching: Given a collection C of k-sets over a

universe U , is there a subset S ⊆ C such that:

• Every x ∈ U is in some k-set s in S

• The sets of S are disjoint; i.e. for every s1, s2 ∈ S, s1 ∩ s2 = ∅
Note: When k = 2, this is polynomial time solvable (but the problem is

NP -hard for k ≥ 3)
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From 3-D perfect matching to 3-anonymity

Given an instance of 3-dim. perfect matching:

U = {x1, x2, . . . , xn}, C = {s1, . . . , sm} such that

For all j = 1, . . . , m, sj ⊆ U and |sj | = 3 ,

Define a table T of records where:

• Records (rows) correspond to xi ∈ U

• Attributes (columns) correspond to sj ∈ C

More precisely,

T [i, j] := 0 if xi ∈ sj ,

i otherwise.

We then ask: does the optimal 3-anonymized solution suppress at most

n · (m − 1) fields?
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Example of reduction in action

U = {1, 2, 3, 4, 5, 6} and C = { {1, 2, 3}, {1, 4, 5}, {4, 5, 6}, {2, 3, 6} }
The reduction results in the table:

{1, 2, 3} {1, 4, 5} {4, 5, 6} {2, 3, 6}
1 0 0 1 1

2 0 2 2 0

3 0 3 3 0

4 4 0 0 4

5 5 0 0 5

6 6 6 0 0
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Perfect Matching 1
3-D perfect matching { {1, 2, 3}, {4, 5, 6} } corresponds to the

3-anonymized table:

{1, 2, 3} {1, 4, 5} {4, 5, 6} {2, 3, 6}
1 0 * * *

2 0 * * *

3 0 * * *

4 * * 0 *

5 * * 0 *

6 * * 0 *
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Perfect Matching 2
3-D perfect matching { {1, 4, 5}, {2, 3, 6} } corresponds to:

{1, 2, 3} {1, 4, 5} {4, 5, 6} {2, 3, 6}
1 * 0 * *

2 * * * 0

3 * * * 0

4 * 0 * *

5 * 0 * *

6 * * * 0

Some observations:

• If a set sj doesn’t appear in the perfect matching, then its column is
all *’s

• If sj does appear, then 3 entries in its column are not *’s
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Why does this work?
(Recall m = number of sets in collection = number of columns in table)

• A group of 3 rows needs at least 3 · (m − 1) stars in order for the

group to become indistinguishable

Follows from T [i, j] := i if xi /∈ sj

• A group of 3 rows corresponds to the elements of a set sj if and only

if exactly 3 · (m − 1) stars are required

The rows have 0 in the jth column, differ in other columns

• Thus there is a perfect matching iff for every group of 3 rows, exactly

3 · (m − 1) stars are necessary

=⇒ n · (m − 1) stars in total

So there is a 3-D perfect matching if and only if the number of entries
suppressed in the optimal 3-anonymized solution is n · (m − 1)
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Some special cases
Let n be the number of records.

What if...

• Number of attributes per record (number of columns) is at most
log(n)?

Reduction doesn’t work; resulting subcase of k-dimensional perfect

matching is easy – Sweeney has announced a polytime algorithm

• Number of possible field entries (alphabet) is constant?

Recently resolved in a paper submitted to ESA 2004 – it suffices to

have a ternary alphabet
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O(k log k)-approximation for k-anonymity
We will approximately solve a related problem, which we call k-minimum

diameter sum

Given a collection of vectors S ⊆ Σm, the diameter of S is

d(S) := max
u,v∈S

h(u, v),

where h is Hamming distance

(d(S) is the diameter of the smallest Hamming ball enclosing S)

The k-minimum diameter sum problem: Given V ⊆ Σm, find a

partition Π of V into sets S with |S| ∈ [k, 2k − 1], so that
∑

S∈Π d(S) is

minimized
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Minimum diameters and k-anonymity
Theorem. Suppose partition Π of V is an α-approximation to
k-minimum diameter sum. Then the following is a 3kα-approximation
algorithm for optimally k-anonymizing V :

For each S ∈ Π and for all j = 1, . . . , m, if there are u, v ∈ S with

u[j] �= v[j], set w[j] := ∗ for all w ∈ S.

Sketch: For any partition Π and any S ∈ Π,

• At least d(S) coordinates (out of m) need to be suppressed to make
the vectors of S identical

=⇒ at least |S| · d(S) ≥ kd(S) stars are required to anonymize S

• Every pair {u, v} ⊆ S has d(u, v) ≤ d(S), so we only need to insert
at most d(S) stars per pair

=⇒ the algorithm uses at most
(|S|

2

) · d(S) ≤ 3k2d(S) stars to
anonymize S
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Approximating Minimum Diameter Sum
One line summary: Reduce to Set Cover, convert cover into partition

Set Cover: Given a collection C of sets from a universe U and a weight

function w : C → N, find S ⊆ C where
∑

S∈S w(S) is minimized and

every x ∈ U appears in some S ∈ S
Outline of reduction

• Let C be collection of S ⊆ V such that k ≤ |S| ≤ 2k − 1. Find a set
cover S for C using the standard greedy (1 + ln 2k)-approximation
that repeatedly chooses the most “cost-effective” set S

• For any pair of sets S, T ∈ S, both containing some v ∈ V ,

– if one of S or T is larger than k, remove v from it

– if not, |S| = |T | = k, so replace S and T with S ∪ T in S
Claim: The resulting partition has a diameter sum that is no more than
the diameter sum of S
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Caveat!
Building the collection C of all subsets with cardinality in the range
[k, 2k − 1] takes O(n2k−1) time

• This can be skirted with a little geometric trickery

• Still get an O(k log k) approximation, but now O(n3) time
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Outline of faster algorithm
Instead of using the whole collection C, use a much smaller one, which is
reconstructed at each iteration of the greedy set cover algorithm

Each iteration i of the set cover approximation algorithm adds a new set
to its collection

For j = 1, . . . , 2k − 1 and v ∈ V , define Si,j,v to be the set of j nearest
neighbors of v (including v) that are not yet included in the cover at
iteration i; if j < k, also include the k − j covered vectors closest to v

Let Ci be the collection of Si,j,v at iteration i

• Ci is “re-built” (in O(kn2) time) at each iteration of the greedy
algorithm, as more vectors become covered

• Greedy algorithm runs in O(n) iterations, so O(kn3) time

Claim: This gives a 2(1 + ln 2k)-approximation to minimum diameter
sum, i.e. a 6k(1 + ln 2k)-approximation to k-anonymity
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Recent improvements (not in the paper)

Aggarwal, Feder, Kentapadi, Motwani, Panigrahy, Thomas, and Zhu

(a.k.a. a bunch of people at Stanford) have shown:

• Still NP -hard for a ternary alphabet

• O(k)-approximation for k-anonymity

• 1.5-approximation for 2-anonymity, and 2-approximation for

3-anonymity

This paper may appear in ESA04; stay tuned
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Interesting directions (not in the paper)

• The maximum disclosure problem: k-anonymizing, but now we

want to maximize the total number of fields not suppressed – how

well can one approximate?

We (that is, I) conjecture there is an O(k)-approximation

• The costly suppression problem: Suppose you can only suppress at

most F fields among all the records – what’s the maximum k such

that you can still k-anonymize the records?

NP -hard, but I’ve no idea what approximation is like
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