On the Complexity of Optimal K-Anonymity

Ryan Williams (with Adam Meyerson)
PODS 2004

What is k-anonymity?

- Strategy for releasing large amounts of personal data, while still protecting privacy of individuals
- Originally proposed by Latanya Sweeney
- Level of privacy protection depends on a parameter k

What is k-anonymity?

In particular, data fields are either generalized or suppressed

- Generalized: e.g. "age 35 " becomes "age 20-40"
- Suppressed: e.g. "age 35 " is withheld entirely

In our work, we deal only with optimal k-anonymity via suppression
Optimal k-anonymity: Given a list of records, minimize the number of fields suppressed, such that for each record r, there are $k-1$ other records that are indistinguishable from r.

Example of k-anonymity

Consider the query "Who had an x-ray at this hospital yesterday?" and the following response:

first	last	age	race
Harry	Stone	34	Afr-Am
John	Reyser	36	Cauc
Beatrice	Stone	34	Afr-Am
John	Delgado	22	Hisp

- Want to 2-anonymize this data (using suppression) before release

Example of k-anonymity

Consider the query "Who had an x-ray at this hospital yesterday?" and the following response:

first	last	age	race
$*$	Stone	34	Afr-Am
John	\star	\star	\star
$*$	Stone	34	Afr-Am
John	\star	\star	\star

- Rows 1 and 3 are indistinguishable, 2 and 4 are indistinguishable

Overview of Talk

- NP-hardness of optimal k-anonymity
- For a sufficiently large alphabet, k-anonymity is hard for any $k \geq 3$
- Approximation of k-anonymity
- Can find a solution that suppresses at most $O(k \log k)$ times the optimum number of fields
- Two $O(k \log k)$-approximation algorithms: a simple one with $O\left(n^{2 k}\right)$ time, and a more complicated one with $O\left(n^{3}\right)$ time (the latter improves the second algorithm in the paper)

Hardness of k-anonymity

Optimal k-anonymity: Given a list of records, minimize the number of fields suppressed, such that for each record r, there are $k-1$ other records that are indistinguishable from r.

We will give a reduction from k-dimensional perfect matching to the above problem
k-dimensional perfect matching: Given a collection C of k-sets over a universe U, is there a subset $S \subseteq C$ such that:

- Every $x \in U$ is in some k-set s in S
- The sets of S are disjoint; i.e. for every $s_{1}, s_{2} \in S, s_{1} \cap s_{2}=\emptyset$

Note: When $k=2$, this is polynomial time solvable (but the problem is $N P$-hard for $k \geq 3$)

From 3-D perfect matching to 3-anonymity

Given an instance of 3-dim. perfect matching:
$U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, \quad C=\left\{s_{1}, \ldots, s_{m}\right\}$ such that
For all $j=1, \ldots, m, s_{j} \subseteq U$ and $\left|s_{j}\right|=3$,

Define a table T of records where:

- Records (rows) correspond to $x_{i} \in U$
- Attributes (columns) correspond to $s_{j} \in C$

More precisely,

$$
\begin{aligned}
& T[i, j]:= \text { if } x_{i} \in s_{j} \\
& i \\
& \text { otherwise }
\end{aligned}
$$

We then ask: does the optimal 3-anonymized solution suppress at most $n \cdot(m-1)$ fields?

Example of reduction in action

$$
U=\{1,2,3,4,5,6\} \text { and } C=\{\{1,2,3\},\{1,4,5\},\{4,5,6\},\{2,3,6\}\}
$$

The reduction results in the table:

	$\{1,2,3\}$	$\{1,4,5\}$	$\{4,5,6\}$	$\{2,3,6\}$
1	0	0	1	1
2	0	2	2	0
3	0	3	3	0
4	4	0	0	4
5	5	0	0	5
6	6	6	0	0

Perfect Matching 1

3-D perfect matching $\{\{1,2,3\},\{4,5,6\}\}$ corresponds to the 3-anonymized table:

	$\{1,2,3\}$	$\{1,4,5\}$	$\{4,5,6\}$	$\{2,3,6\}$
1	0	$*$	$*$	$*$
2	0	$*$	$*$	$*$
3	0	$*$	$*$	$*$
4	$*$	$*$	0	$*$
5	$*$	$*$	0	$*$
6	$*$	$*$	0	$*$

Perfect Matching 2

3-D perfect matching $\{\{1,4,5\},\{2,3,6\}\}$ corresponds to:

	$\{1,2,3\}$	$\{1,4,5\}$	$\{4,5,6\}$	$\{2,3,6\}$
1	$*$	0	$*$	$*$
2	$*$	$*$	$*$	0
3	$*$	$*$	$*$	0
4	$*$	0	$*$	$*$
5	$*$	0	$*$	$*$
6	$*$	$*$	$*$	0

Some observations:

- If a set s_{j} doesn't appear in the perfect matching, then its column is all *'s
- If s_{j} does appear, then 3 entries in its column are not *'s

Why does this work?

(Recall $m=$ number of sets in collection $=$ number of columns in table)

- A group of 3 rows needs at least $3 \cdot(m-1)$ stars in order for the group to become indistinguishable

Follows from $T[i, j]:=i$ if $x_{i} \notin s_{j}$

- A group of 3 rows corresponds to the elements of a set s_{j} if and only if exactly $3 \cdot(m-1)$ stars are required

The rows have 0 in the j th column, differ in other columns

- Thus there is a perfect matching iff for every group of 3 rows, exactly $3 \cdot(m-1)$ stars are necessary
$\Longrightarrow n \cdot(m-1)$ stars in total
So there is a 3-D perfect matching if and only if the number of entries suppressed in the optimal 3-anonymized solution is $n \cdot(m-1)$

Some special cases

Let n be the number of records.

What if...

- Number of attributes per record (number of columns) is at most $\log (n)$?

Reduction doesn't work; resulting subcase of k-dimensional perfect matching is easy - Sweeney has announced a polytime algorithm

- Number of possible field entries (alphabet) is constant? Recently resolved in a paper submitted to ESA 2004 - it suffices to have a ternary alphabet

$O(k \log k)$-approximation for k-anonymity

We will approximately solve a related problem, which we call k-minimum diameter sum

Given a collection of vectors $S \subseteq \Sigma^{m}$, the diameter of S is

$$
d(S):=\max _{u, v \in S} h(u, v)
$$

where h is Hamming distance
$(d(S)$ is the diameter of the smallest Hamming ball enclosing $S)$
The k-minimum diameter sum problem: Given $V \subseteq \Sigma^{m}$, find a partition Π of V into sets S with $|S| \in[k, 2 k-1]$, so that $\sum_{S \in \Pi} d(S)$ is minimized

Minimum diameters and k-anonymity

Theorem. Suppose partition Π of V is an α-approximation to k-minimum diameter sum. Then the following is a $3 k \alpha$-approximation algorithm for optimally k-anonymizing V :

For each $S \in \Pi$ and for all $j=1, \ldots, m$, if there are $u, v \in S$ with $u[j] \neq v[j]$, set $w[j]:=*$ for all $w \in S$.

Sketch: For any partition Π and any $S \in \Pi$,

- At least $d(S)$ coordinates (out of m) need to be suppressed to make the vectors of S identical
\Longrightarrow at least $|S| \cdot d(S) \geq k d(S)$ stars are required to anonymize S
- Every pair $\{u, v\} \subseteq S$ has $d(u, v) \leq d(S)$, so we only need to insert at most $d(S)$ stars per pair
\Longrightarrow the algorithm uses at most $\binom{|S|}{2} \cdot d(S) \leq 3 k^{2} d(S)$ stars to anonymize S

Approximating Minimum Diameter Sum

One line summary: Reduce to Set Cover, convert cover into partition
Set Cover: Given a collection \mathcal{C} of sets from a universe U and a weight function $w: \mathcal{C} \rightarrow \mathbb{N}$, find $\mathcal{S} \subseteq \mathcal{C}$ where $\sum_{S \in \mathcal{S}} w(S)$ is minimized and every $x \in U$ appears in some $S \in \mathcal{S}$

Outline of reduction

- Let \mathcal{C} be collection of $S \subseteq V$ such that $k \leq|S| \leq 2 k-1$. Find a set cover \mathcal{S} for \mathcal{C} using the standard greedy $(1+\ln 2 k)$-approximation that repeatedly chooses the most "cost-effective" set S
- For any pair of sets $S, T \in \mathcal{S}$, both containing some $v \in V$,
- if one of S or T is larger than k, remove v from it
- if not, $|S|=|T|=k$, so replace S and T with $S \cup T$ in \mathcal{S}

Claim: The resulting partition has a diameter sum that is no more than the diameter sum of \mathcal{S}

Caveat!

Building the collection \mathcal{C} of all subsets with cardinality in the range $[k, 2 k-1]$ takes $O\left(n^{2 k-1}\right)$ time

- This can be skirted with a little geometric trickery
- Still get an $O(k \log k)$ approximation, but now $O\left(n^{3}\right)$ time

Outline of faster algorithm

Instead of using the whole collection \mathcal{C}, use a much smaller one, which is reconstructed at each iteration of the greedy set cover algorithm

Each iteration i of the set cover approximation algorithm adds a new set to its collection

For $j=1, \ldots, 2 k-1$ and $v \in V$, define $S_{i, j, v}$ to be the set of j nearest neighbors of v (including v) that are not yet included in the cover at iteration i; if $j<k$, also include the $k-j$ covered vectors closest to v

Let \mathcal{C}_{i} be the collection of $S_{i, j, v}$ at iteration i

- \mathcal{C}_{i} is "re-built" (in $O\left(k n^{2}\right)$ time) at each iteration of the greedy algorithm, as more vectors become covered
- Greedy algorithm runs in $O(n)$ iterations, so $O\left(k n^{3}\right)$ time

Claim: This gives a $2(1+\ln 2 k)$-approximation to minimum diameter sum, i.e. a $6 k(1+\ln 2 k)$-approximation to k-anonymity

Recent improvements (not in the paper)

Aggarwal, Feder, Kentapadi, Motwani, Panigrahy, Thomas, and Zhu (a.k.a. a bunch of people at Stanford) have shown:

- Still $N P$-hard for a ternary alphabet
- $O(k)$-approximation for k-anonymity
- 1.5-approximation for 2-anonymity, and 2-approximation for 3-anonymity

This paper may appear in ESA04; stay tuned

Interesting directions (not in the paper)

- The maximum disclosure problem: k-anonymizing, but now we want to maximize the total number of fields not suppressed - how well can one approximate?

We (that is, I) conjecture there is an $O(k)$-approximation

- The costly suppression problem: Suppose you can only suppress at most F fields among all the records - what's the maximum k such that you can still k-anonymize the records?
NP-hard, but I've no idea what approximation is like

