Near Optimal Online Auctions

Jason D. Hartline Microsoft Research – Silicon Valley

(Joint work with Avrim Blum)

October 28, 2004

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

- Seller has unlimited supply of an item (e.g., digital good).
- Bidders arrive one at a time, bid $b_1, b_2, \ldots \in [1, h]$
- Auctioneer decides sale price (or reject) before next bidder arrives.
- Goal: maximize auctioneer profit!

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

- Seller has unlimited supply of an item (e.g., digital good).
- Bidders arrive one at a time, bid $b_1, b_2, \ldots \in [1, h]$
- Auctioneer decides sale price (or reject) before next bidder arrives.
- Goal: maximize auctioneer profit!

Two Difficulties:

- 1. Bidders' values are private (need game-theory).
- 2. We do not know future (need online analysis).

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

- Seller has unlimited supply of an item (e.g., digital good).
- Bidders arrive one at a time, bid $b_1, b_2, \ldots \in [1, h]$
- Auctioneer decides sale price (or reject) before next bidder arrives.
- Goal: maximize auctioneer profit!

Two Difficulties:

- 1. Bidders' values are private (need game-theory). Truthful mechanism design: price offered bidder i not function of b_i .
- 2. We do not know future (need online analysis).

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

- Seller has unlimited supply of an item (e.g., digital good).
- Bidders arrive one at a time, bid $b_1, b_2, \ldots \in [1, h]$
- Auctioneer decides sale price (or reject) before next bidder arrives.
- Goal: maximize auctioneer profit!

Two Difficulties:

- 1. Bidders' values are private (need game-theory). Truthful mechanism design: price offered bidder i not function of b_i .
- 2. We do not know future (need online analysis). Online algorithm: price offered bidder i not function of future bids.

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

- Seller has unlimited supply of an item (e.g., digital good).
- Bidders arrive one at a time, bid $b_1, b_2, \ldots \in [1, h]$
- Auctioneer decides sale price (or reject) before next bidder arrives.
- Goal: maximize auctioneer profit!

Two Difficulties:

- 1. Bidders' values are private (need game-theory). Truthful mechanism design: price offered bidder i not function of b_i .
- 2. We do not know future (need online analysis).

Online algorithm: price offered bidder i not function of future bids.

Conclusion: offer for bidder *i* based only on prior bids: b_1, \ldots, b_{i-1} .

Definition: OPT = optimal single price profit.

Definition: OPT = optimal single price profit.

Assumption: bids in [1, h].

Definition: OPT = optimal single price profit.

Assumption: bids in [1, h].

Goal: $\mathbf{E}[\operatorname{Profit}] \geq \operatorname{OPT} / \beta - \gamma h.$

- $\beta = approximation ratio.$
- $\gamma h =$ additive loss.

- \implies 1. Standard Expert Learning Algorithm (Weighted Majority).
 - 2. Online (Expert) Learning \Rightarrow Online Auction Result: $(1 - \epsilon) \text{ OPT} - O(\frac{h}{\epsilon} \log \log h)$, given [1, h]. [Blum Kumar Rudra Wu 2003]
 - 3. Kalai's Expert Learning Algorithm & Analysis.
 - 4. Modifications of Kalai's Expert Algorithm for Online Auctions. Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon})$.
 - 5. An Application: Attribute Auctions.

Expert Online Learning Problem:

In round i:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Online Learning _

Expert Online Learning Problem:

In round i:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let s_i be total payoff thus far.

Choose expert j's strategy with probability proportional to $2^{s_j/h}$.

Online Learning _

Expert Online Learning Problem:

In round i:

- 1. Each of k experts propose a strategy.
- 2. We choose an expert's strategy.
- 3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let s_j be total payoff thus far.

Choose expert j's strategy with probability proportional to $2^{s_j/h}$.

Result:
$$E[payoff] = OPT / 2 - O(h \log k).$$

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

1. Expert *j*'s strategy: "use sale price p_j ".

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$ experts)

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$ experts)

Result: $\mathbf{E}[\text{profit}] = \text{OPT} / 4 - O(h \log \log h).$

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$ experts)

Result: $E[\text{profit}] = OPT / 4 - O(h \log \log h).$

Drawbacks:

- $h \log \log h$ additive loss.
- Must know h in advance.

- 1. Standard Expert Learning Algorithm (Weighted Majority).
- 2. Online (Expert) Learning \Rightarrow Online Auction Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$, given [1, h]. [Blum Kumar Rudra Wu 2003]
- \implies 3. Kalai's Expert Learning Algorithm & Analysis.
 - 4. Modifications of Kalai's Expert Algorithm for Online Auctions. Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon})$.
 - 5. An Application: Attribute Auctions.

Kalai's Experts Algorithm:

1. (initialization) For each expert, j, hallucinate initial score, s_j , as:

 $h \times$ number of heads flipped in a row.

2. Run deterministic "go with best expert" algorithm.

Kalai's Experts Algorithm:

1. (initialization) For each expert, j, hallucinate initial score, s_j , as:

 $h \times$ number of heads flipped in a row.

2. Run deterministic "go with best expert" algorithm.

Result: $\mathbf{E}[\operatorname{profit}] = \operatorname{OPT} / 2 - O(h \log k).$

Definitions: (random variables)

 $M = \text{final } \max_j s_j$

 $M_i =$ change to $\max_j s_j$ in round i

 $H = \max \min \max$

Definitions: (random variables)

 $M = \text{final } \max_j s_j$

 M_i = change to $\max_j s_j$ in round i P_i = profit in round i

 $H = \max \min \max$

P =algorithm profit

Definitions: (random variables)

 $M = \text{final } \max_j s_j$ $M_i = \text{change to } \max_j s_j \text{ in round } i$ H = maximum hallucination

 $M = H + \sum_{i} M_{i}$

P =algorithm profit

$$P_i = profit$$
 in round i

$$P = \sum_{i} P_i$$

Definitions: (random variables)

 $M = \text{final } \max_i s_i$ M_i = change to $\max_i s_i$ in round i P_i = profit in round i $H = \max \min \min \max$

 $M = H + \sum_{i} M_{i}$

P =algorithm profit

$$P = \sum_{i} P_i$$

Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2$. Theorem: $\mathbf{E}[P] \ge \operatorname{OPT} / 2 - O(h \log k).$

Definitions: (random variables)

 $M = \text{final } \max_j s_j$ $M_i = \text{change to } \max_j s_j \text{ in round } i$ H = maximum hallucination

 $M = H + \sum_{i} M_{i}$

$$P = \mathsf{algorithm} \mathsf{ profit}$$

$$P_i = profit$$
 in round i

$$P = \sum_{i} P_i$$

Lemma: $\mathbf{E}[P_i] \ge \mathbf{E}[M_i]/2$. Theorem: $\mathbf{E}[P] \ge \operatorname{OPT}/2 - O(h \log k)$.

Proof:

•
$$\mathbf{E}[P] = \sum_i \mathbf{E}[P_i]$$

Definitions: (random variables)

 $M = \text{final } \max_{i} s_{i}$ M_i = change to $\max_j s_j$ in round i P_i = profit in round i $H = \max \min \max$

 $M = H + \sum_{i} M_{i}$

$$P = \mathsf{algorithm} \mathsf{ profit}$$

$$P = \sum_{i} P_i$$

Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2$.

Theorem: $\mathbf{E}[P] \ge \operatorname{OPT} / 2 - O(h \log k).$

Proof:
•
$$\mathbf{E}[P] = \overbrace{\sum_i \mathbf{E}[P_i] \ge \frac{1}{2} \sum_i \mathbf{E}[M_i]}^{\text{from Lemma}}$$

Definitions: (random variables)

 $M = \text{final } \max_i s_i$ M_i = change to $\max_i s_i$ in round $i = P_i$ = profit in round i $H = \max \min \min \max$

 $P = \sum_{i} P_{i}$ $M = H + \sum_{i} M_{i}$

Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2$.

Theorem: $\mathbf{E}[P] \ge \operatorname{OPT} / 2 - O(h \log k)$.

P =algorithm profit

Definitions: (random variables)

 $M = \text{final } \max_i s_i$ M_i = change to $\max_i s_i$ in round $i = P_i$ = profit in round i $H = \max \min \min \max$

 $P = \sum_{i} P_{i}$ $M = H + \sum_{i} M_{i}$

Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2$.

NEAR OPTIMAL ONLINE AUCTIONS - OCTOBER 28, 2004

Theorem: $\mathbf{E}[P] \ge \operatorname{OPT} / 2 - O(h \log k)$.

•
$$\mathbf{E}[M] \ge \text{OPT}$$
 and $\mathbf{E}[H] = O(h \log k)$.

P =algorithm profit

Definitions: (random variables)

 $M = \text{final } \max_{i} s_{i}$ $M_i = \text{change to } \max_i s_i \text{ in round } i \qquad P_i = \text{profit in round } i$ $H = \max \min \min \max$

P =algorithm profit

 $M = H + \sum_{i} M_{i}$ $P = \sum_{i} P_{i}$

Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2$.

Theorem: $\mathbf{E}[P] \ge \operatorname{OPT} / 2 - O(h \log k).$

Proof: from Lemma • $\mathbf{E}[P] = \sum_{i} \mathbf{E}[P_{i}] \ge \frac{1}{2} \sum_{i} \mathbf{E}[M_{i}] = \frac{1}{2} (\mathbf{E}[M] - \mathbf{E}[H]).$

- $\mathbf{E}[M] \ge \text{OPT}$ and $\mathbf{E}[H] = O(h \log k)$.
- Result: $\mathbf{E}[P] \ge \frac{1}{2} \operatorname{OPT} O(h \log k)$.

Recall Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2.$

Proof of Lemma

Recall Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2.$

Proof: (after round *i*)

- 1. Tally expert "raw scores" (without hallucination) after round i.
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof of Lemma

Recall Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2.$

Proof: (after round i)

- 1. Tally expert "raw scores" (without hallucination) after round i.
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof of Lemma

Recall Lemma: $\mathbf{E}[P_i] \geq \mathbf{E}[M_i]/2.$

Proof: (after round i)

- 1. Tally expert "raw scores" (without hallucination) after round i.
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Recall Lemma: $\mathbf{E}[P_i] \ge \mathbf{E}[M_i]/2.$

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add h to expert's score.
- Tails: discard expert.

Proof:

- 1. Tally expert scores up to including round i (without hallucination).
- 2. Re-hallucinate (repeat until one expert is left):

- Heads: add *h* to expert's score.
- Tails: discard expert.
- 3. Remaining expert j: best and still has coin.

Case 1: j 's coin flips heads.	Case 2: j 's coin flips tails.

Recall: Expert j is best and has coin to flip.

Case 2: j's coin flips tails.

Recall: Expert j is best and has coin to flip.

At least:
$$P_i > 0$$
.

<mark>h h h t</mark>

h (t)

t

h

- 1. Standard Expert Learning Algorithm (Weighted Majority).
- 2. Online (Expert) Learning \Rightarrow Online Auction Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$, given [1, h]. [Blum Kumar Rudra Wu 2003]
- 3. Kalai's Expert Learning Algorithm & Analysis.
- ⇒ 4. Modifications of Kalai's Expert Algorithm for Online Auctions. Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon})$.
 - 5. An Application: Attribute Auctions.

Recall Application: (to online auctions)

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$ experts)

Recall Application: (to online auctions)

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$ experts)

Modification to Kalai:

1. (initialization) For each expert, j, hallucinate initial score, s_j , as $p_j \times$ number of heads flipped in a row.

2. Run deterministic "go with best expert" algorithm.

Recall Application: (to online auctions)

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$ experts)

Modification to Kalai:

- 1. (initialization) For each expert, j, hallucinate initial score, s_j , as $p_j \times$ number of heads flipped in a row.
- 2. Run deterministic "go with best expert" algorithm.

Analysis:

• Lemma still holds.

Recall Proof of Lemma (cont)

Recall Application: (to online auctions)

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$)

Modification to Kalai:

- 1. (initialization) For each expert, j, halucinate initial score as $$p_j \times$$ number of heads flipped in a row.
- 2. Run deterministic "go with best expert" algorithm.

Analysis:

• Lemma still holds.

Recall Application: (to online auctions)

- 1. Expert *j*'s strategy: "use sale price p_j ".
- 2. Best expert \Rightarrow best single price profit.
- 3. For bids in [1, h] use $p_j = 2^j$. ($k = \log h$)

Modification to Kalai:

- 1. (initialization) For each expert, j, halucinate initial score as $p_j \times \text{ number of heads flipped in a row.}$
- 2. Run deterministic "go with best expert" algorithm.

Analysis:

- Lemma still holds.
- Theorem improves: $\mathbf{E}[\text{payoff}] \ge \text{OPT}/4 h$.

Theorem: $\mathbf{E}[P] \ge \operatorname{OPT} / 4 - h$.

•
$$\mathbf{E}[M] \ge \mathrm{OPT}_{\mathrm{expert}}$$

Theorem:
$$\mathbf{E}[P] \ge \operatorname{OPT} / 4 - h$$
.

•
$$\mathbf{E}[M] \ge \operatorname{OPT}_{\mathsf{expert}} \ge \frac{1}{2} \operatorname{OPT}_{\mathsf{expert}}$$

Theorem:
$$\mathbf{E}[P] \ge \operatorname{OPT} / 4 - h.$$

Proof: • $\mathbf{E}[P] = \overbrace{\sum_{i} \mathbf{E}[P_{i}] \geq \frac{1}{2} \sum_{i} \mathbf{E}[M_{i}]}^{\text{from Lemma}} = \frac{1}{2} (\mathbf{E}[M] - \mathbf{E}[H]).$

•
$$\mathbf{E}[M] \ge \operatorname{OPT}_{\mathsf{expert}} \ge \frac{1}{2} \operatorname{OPT}_{\mathsf{expert}}$$

• $\mathbf{E}[H] \leq \sum_{j} \mathbf{E}[j$'s hallucination] $\leq 2h$.

Theorem:
$$\mathbf{E}[P] \ge \operatorname{OPT} / 4 - h$$
.

Proof: • $\mathbf{E}[P] = \overbrace{\sum_{i} \mathbf{E}[P_{i}] \geq \frac{1}{2} \sum_{i} \mathbf{E}[M_{i}]}^{\text{from Lemma}} = \frac{1}{2} (\mathbf{E}[M] - \mathbf{E}[H]).$

•
$$\mathbf{E}[M] \ge \operatorname{OPT}_{\mathsf{expert}} \ge \frac{1}{2} \operatorname{OPT}.$$

- $\mathbf{E}[H] \leq \sum_{j} \mathbf{E}[j$'s hallucination] $\leq 2h$.
 - E[number of heads in a row] = 1. (geometric distribution)
 - $\mathbf{E}[j$'s hallucination] = $p_j \times \mathbf{E}[$ number of heads $] = p_j = 2^j$.

Theorem:
$$\mathbf{E}[P] \ge \operatorname{OPT} / 4 - h$$
.

Proof: • $\mathbf{E}[P] = \overbrace{\sum_{i} \mathbf{E}[P_{i}] \geq \frac{1}{2} \sum_{i} \mathbf{E}[M_{i}]}^{\text{from Lemma}} = \frac{1}{2} (\mathbf{E}[M] - \mathbf{E}[H]).$

•
$$\mathbf{E}[M] \ge \operatorname{OPT}_{\mathsf{expert}} \ge \frac{1}{2} \operatorname{OPT}.$$

- $\mathbf{E}[H] \leq \sum_{j} \mathbf{E}[j$'s hallucination] $\leq 2h$.
 - E[number of heads in a row] = 1. (geometric distribution)
 - $\mathbf{E}[j$'s hallucination] = $p_j \times \mathbf{E}[$ number of heads $] = p_j = 2^j$.
- Result: $\mathbf{E}[P] \ge \operatorname{OPT} / 4 h$.

1. Near Optimal Online Auction: (up to constant factors)

•
$$\mathbf{E}[P] \ge (1 - \epsilon) \operatorname{OPT} - O(h/\epsilon).$$

• No need to know bid range in advance.

- 1. Near Optimal Online Auction: (up to constant factors)
 - $\mathbf{E}[P] \ge (1 \epsilon) \operatorname{OPT} O(h/\epsilon).$ (Prior result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$) [Blum et al. 2003]
 - No need to know bid range in advance.

1. Near Optimal Online Auction: (up to constant factors)

•
$$\mathbf{E}[P] \ge (1 - \epsilon) \operatorname{OPT} - O(h/\epsilon).$$

(Prior result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$) [Blum et al. 2003]

- No need to know bid range in advance.
- 2. Posted Price Online "Auctions":

- 1. Near Optimal Online Auction: (up to constant factors)
 - $\mathbf{E}[P] \ge (1 \epsilon) \operatorname{OPT} O(h/\epsilon).$ (Prior result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$) [Blum et al. 2003]
 - No need to know bid range in advance.
- 2. Posted Price Online "Auctions":
 - Result: $(1 \epsilon) \operatorname{OPT} O(\frac{h}{\epsilon} \log \log h)$

• **Open:** Constant additive term?

- 1. Near Optimal Online Auction: (up to constant factors)
 - $\mathbf{E}[P] \ge (1 \epsilon) \operatorname{OPT} O(h/\epsilon).$ (Prior result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$) [Blum et al. 2003]
 - No need to know bid range in advance.
- 2. Posted Price Online "Auctions":
 - Result: $(1 \epsilon) \operatorname{OPT} O(\frac{h}{\epsilon} \log \log h)$ (Prior result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log h \log \log h)$) [Blum et al. 2003]
 - **Open:** Constant additive term?

- 1. Standard Expert Learning Algorithm (Weighted Majority).
- 2. Online (Expert) Learning \Rightarrow Online Auction Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon} \log \log h)$, given [1, h]. [Blum Kumar Rudra Wu 2003]
- 3. Kalai's Expert Learning Algorithm & Analysis.
- 4. Modifications of Kalai's Expert Algorithm for Online Auctions. Result: $(1 - \epsilon) \operatorname{OPT} - O(\frac{h}{\epsilon})$.
- \implies 5. An Application: Attribute Auctions.

The Unlimited Supply (Offline) Auction Problem:

Given:

- *n* identical items for sale.
- *n* indistinguishable bidders.

Design: Auction with profit near OPT = optimal single price sale.

Solution: E.g., [Myersion 1981, Goldberg Hartline Wright 2001]

The Unlimited Supply (Offline) Auction Problem:

Given:

- *n* identical items for sale.
- *n* indistinguishable bidders.

Design: Auction with profit near OPT = optimal single price sale.

Solution: E.g., [Myersion 1981, Goldberg Hartline Wright 2001]

What if bidders are distinguishible?

The Attribute Auction Problem:

Given:

- *n* identical items for sale.
- n bidders, bidder i with attribute a_i .

Design: Auction with maximal profit. (use attribute to segment market)

The Attribute Auction Problem:

Given:

- *n* identical items for sale.
- n bidders, bidder i with attribute a_i .

Design: Auction with maximal profit. (use attribute to segment market)

Truthful mechanism design: For bidder i offer price

$$p_{i} = f \begin{pmatrix} a_{1}, \dots, a_{i-1}, a_{i}, a_{i+1}, \dots, a_{n} \\ b_{1}, \dots, b_{i-1}, ?, b_{i+1}, \dots, b_{n} \end{pmatrix}$$

Attribute Auction, AA:

- 1. Order bids by attribute.
- 2. Simulate online auction.
- 3. Reset simulation whenever $OPT > \gamma h$.

Attribute Auction, AA:

- 1. Order bids by attribute.
- 2. Simulate online auction.
- 3. Reset simulation whenever $OPT > \gamma h$.

Result: performance comparable to approximately optimal auctions on optimal market segmentations.

Attribute Auction, AA:

- 1. Order bids by attribute.
- 2. Simulate online auction.
- 3. Reset simulation whenever $OPT > \gamma h$.

Result: performance comparable to approximately optimal auctions on optimal market segmentations.

Open: Multidimensional Attribute Auctions?

Open: Structured Attribute Auctions?