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Online Auction Problem

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

• Seller has unlimited supply of an item (e.g., digital good).

• Bidders arrive one at a time, bid b1, b2, . . . ∈ [1, h]

• Auctioneer decides sale price (or reject) before next bidder arrives.

• Goal: maximize auctioneer profit!
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Two Difficulties:

1. Bidders’ values are private (need game-theory).

2. We do not know future (need online analysis).

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
1



Online Auction Problem

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

• Seller has unlimited supply of an item (e.g., digital good).

• Bidders arrive one at a time, bid b1, b2, . . . ∈ [1, h]

• Auctioneer decides sale price (or reject) before next bidder arrives.

• Goal: maximize auctioneer profit!

Two Difficulties:

1. Bidders’ values are private (need game-theory).

Truthful mechanism design: price offered bidder i not function of bi.

2. We do not know future (need online analysis).

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
1



Online Auction Problem

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

• Seller has unlimited supply of an item (e.g., digital good).

• Bidders arrive one at a time, bid b1, b2, . . . ∈ [1, h]

• Auctioneer decides sale price (or reject) before next bidder arrives.

• Goal: maximize auctioneer profit!

Two Difficulties:

1. Bidders’ values are private (need game-theory).

Truthful mechanism design: price offered bidder i not function of bi.

2. We do not know future (need online analysis).

Online algorithm: price offered bidder i not function of future bids.

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
1



Online Auction Problem

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]

• Seller has unlimited supply of an item (e.g., digital good).

• Bidders arrive one at a time, bid b1, b2, . . . ∈ [1, h]

• Auctioneer decides sale price (or reject) before next bidder arrives.

• Goal: maximize auctioneer profit!

Two Difficulties:

1. Bidders’ values are private (need game-theory).

Truthful mechanism design: price offered bidder i not function of bi.

2. We do not know future (need online analysis).

Online algorithm: price offered bidder i not function of future bids.

Conclusion: offer for bidder i based only on prior bids: b1, . . . , bi−1.
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Performance Guarantees?

Definition: OPT = optimal single price profit.
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Performance Guarantees?

Definition: OPT = optimal single price profit.

Assumption: bids in [1, h].

Goal: E[Profit] ≥ OPT /β − γh.

• β = approximation ratio.

• γh = additive loss.

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
2



Overview

1.=⇒ Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning ⇒ Online Auction
Result: (1 − ε)OPT − O(h

ε log log h), given [1, h].
x [Blum Kumar Rudra Wu 2003]

3. Kalai’s Expert Learning Algorithm & Analysis.

4. Modifications of Kalai’s Expert Algorithm for Online Auctions.
Result: (1 − ε)OPT−O(h

ε ).

5. An Application: Attribute Auctions.
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Online Learning

Expert Online Learning Problem:

In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).
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Expert Online Learning Problem:

In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let sj be total payoff thus far.

Choose expert j ’s strategy with probability proportional to 2sj/h.
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In round i:

1. Each of k experts propose a strategy.

2. We choose an expert’s strategy.

3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm: (for round i)

Let h be maximum payoff. For expert j, let sj be total payoff thus far.

Choose expert j ’s strategy with probability proportional to 2sj/h.

Result: E [payoff] = OPT /2 − O(h log k).
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Online Learning for Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]
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Online Learning for Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]

1. Expert j ’s strategy: “use sale price pj ”.

2. Best expert ⇒ best single price profit.

3. For bids in [1, h] use pj = 2j . (k = log h experts)

Result: E[profit] = OPT /4 − O(h log log h).

Drawbacks:

• h log log h additive loss.

• Must know h in advance.
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Overview

1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning ⇒ Online Auction
Result: (1 − ε)OPT−O(h

ε log log h), given [1, h].
x [Blum Kumar Rudra Wu 2003]

3.=⇒ Kalai’s Expert Learning Algorithm & Analysis.

4. Modifications of Kalai’s Expert Algorithm for Online Auctions.
Result: (1 − ε)OPT−O(h

ε ).

5. An Application: Attribute Auctions.
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Expert Learning via Hallucination

Kalai’s Experts Algorithm:

1. (initialization) For each expert, j, hallucinate initial score, sj , as:

h× number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.
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Kalai’s Analysis

Definitions: (random variables)

M = final maxj sj

Mi = change to maxj sj in round i

H = maximum hallucination
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Definitions: (random variables)

M = final maxj sj P = algorithm profit

Mi = change to maxj sj in round i Pi = profit in round i

H = maximum hallucination

M = H +
∑

iMi P =
∑

iPi

Lemma: E[Pi] ≥ E[Mi] /2.

Theorem: E[P ] ≥ OPT /2 − O(h log k).

Proof:

• E[P ] =
∑

iE[Pi] .
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Kalai’s Analysis

Definitions: (random variables)

M = final maxj sj P = algorithm profit

Mi = change to maxj sj in round i Pi = profit in round i
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Proof:
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2

∑

iE[Mi] = 1

2
(E[M ] − E[H ]).

• E[M ] ≥ OPT and E[H ] = O(h log k).
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Kalai’s Analysis

Definitions: (random variables)

M = final maxj sj P = algorithm profit

Mi = change to maxj sj in round i Pi = profit in round i

H = maximum hallucination

M = H +
∑

iMi P =
∑

iPi

Lemma: E[Pi] ≥ E[Mi] /2.

Theorem: E[P ] ≥ OPT /2 − O(h log k).

Proof:

• E[P ] =

from Lemma
︷ ︸︸ ︷
∑

iE[Pi]≥
1

2

∑

iE[Mi] = 1

2
(E[M ] − E[H ]).

• E[M ] ≥ OPT and E[H ] = O(h log k).

• Result: E[P ] ≥ 1

2
OPT−O(h log k).
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Proof of Lemma

Recall Lemma: E[Pi] ≥ E[Mi] /2.
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Proof of Lemma

Recall Lemma: E[Pi] ≥ E[Mi] /2.

Proof: (after round i)

1. Tally expert “raw scores” (without hallucination) after round i.

2. Re-hallucinate (repeat until one expert is left):

Flip coin of expert with lowest score

• Heads: add h to expert’s score.

• Tails: discard expert.

3. Remaining expert j: best and still has coin.
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Proof of Lemma

Recall Lemma: E[Pi] ≥ E[Mi] /2.

Proof: (after round i)

1. Tally expert “raw scores” (without hallucination) after round i.

2. Re-hallucinate (repeat until one expert is left):

Flip coin of expert with lowest score

• Heads: add h to expert’s score.

• Tails: discard expert.

3. Remaining expert j: best and still has coin.
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Proof of Lemma

Recall Lemma: E [Pi] ≥ E[Mi] /2.

Proof:

1. Tally expert scores up to including round i (without hallucination).

2. Re-hallucinate (repeat until one expert is left):

Flip coin of expert with lowest score

• Heads: add h to expert’s score.

• Tails: discard expert.

? ? ? ? ?h
?
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Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.
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Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j ’s coin flips heads. Case 2: j ’s coin flips tails.
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Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j ’s coin flips heads.
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t
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Case 2: j ’s coin flips tails.
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Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j ’s coin flips heads.
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Recall: j ’s payoff ≤ h.

Case 2: j ’s coin flips tails.
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Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j ’s coin flips heads.
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Recall: j ’s payoff ≤ h.
⇒ j best before round i.
⇒ algorithm chose j.
⇒ Pi = Mi.

Case 2: j ’s coin flips tails.
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Proof of Lemma (cont)
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At least: Pi ≥ 0.
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At least: Pi ≥ 0.

∀j, E[Pi | j best] ≥ 1

2
E[Mi | j best] .
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At least: Pi ≥ 0.

∀j, E[Pi | j best] ≥ 1

2
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Overview

1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning ⇒ Online Auction
Result: (1 − ε)OPT−O(h

ε log log h), given [1, h].
x [Blum Kumar Rudra Wu 2003]

3. Kalai’s Expert Learning Algorithm & Analysis.

4.=⇒ Modifications of Kalai’s Expert Algorithm for Online Auctions.
Result: (1 − ε)OPT−O(h

ε ).

5. An Application: Attribute Auctions.
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Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j ’s strategy: “use sale price pj ”.

2. Best expert ⇒ best single price profit.

3. For bids in [1, h] use pj = 2j . (k = log h experts)
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1. Expert j ’s strategy: “use sale price pj ”.

2. Best expert ⇒ best single price profit.

3. For bids in [1, h] use pj = 2j . (k = log h experts)

Modification to Kalai:

1. (initialization) For each expert, j, hallucinate initial score, sj , as

pj× number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.
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Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j ’s strategy: “use sale price pj ”.

2. Best expert ⇒ best single price profit.

3. For bids in [1, h] use pj = 2j . (k = log h experts)

Modification to Kalai:

1. (initialization) For each expert, j, hallucinate initial score, sj , as

pj× number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

Analysis:

• Lemma still holds.
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Recall Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j ’s coin flips heads.

? ? ? ? ?h
?

h
? h

?

t
h
? t

h
?

t

t
h
?

1 2 3 4 · · · k

Recall: j ’s payoff ≤ 2j

⇒ j best before round i.
⇒ algorithm chose j.
⇒ Pi = Mi.

Case 2: j ’s coin flips tails.

? ? ? ? ?h
?

h
? h

?

t
h
? t

h
?

t

t
t

1 2 3 4 · · · k

At least: Pi ≥ 0.

∀j, E[Pi | j best] ≥ 1

2
E[Mi | j best] ⇒ E[Pi] ≥ E[Mi] /2.

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
13



Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j ’s strategy: “use sale price pj ”.

2. Best expert ⇒ best single price profit.

3. For bids in [1, h] use pj = 2j . (k = log h)

Modification to Kalai:

1. (initialization) For each expert, j, halucinate initial score as

pj× number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

Analysis:

• Lemma still holds.
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Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j ’s strategy: “use sale price pj ”.

2. Best expert ⇒ best single price profit.

3. For bids in [1, h] use pj = 2j . (k = log h)

Modification to Kalai:

1. (initialization) For each expert, j, halucinate initial score as

pj× number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

Analysis:

• Lemma still holds.

• Theorem improves: E[payoff] ≥ OPT /4 − h.
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Theorem Re-analysis

Theorem: E[P ] ≥ OPT /4 − h.

Proof:

• E[P ] =

from Lemma
︷ ︸︸ ︷
∑

iE[Pi]≥
1

2

∑

iE[Mi] = 1

2
(E[M ] − E[H ]).

• E[M ] ≥ OPTexpert

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
15



Theorem Re-analysis

Theorem: E[P ] ≥ OPT /4 − h.

Proof:

• E[P ] =

from Lemma
︷ ︸︸ ︷
∑

iE[Pi]≥
1

2

∑

iE[Mi] = 1

2
(E[M ] − E[H ]).

• E[M ] ≥ OPTexpert ≥
1

2
OPT.

NEAR OPTIMAL ONLINE AUCTIONS – OCTOBER 28, 2004
15



Theorem Re-analysis

Theorem: E[P ] ≥ OPT /4 − h.

Proof:

• E[P ] =

from Lemma
︷ ︸︸ ︷
∑

iE[Pi]≥
1

2

∑

iE[Mi] = 1

2
(E[M ] − E[H ]).

• E[M ] ≥ OPTexpert ≥
1

2
OPT.

• E[H ] ≤
∑

j E[j ’s hallucination] ≤ 2h.
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• E[M ] ≥ OPTexpert ≥
1
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OPT.

• E[H ] ≤
∑

j E[j ’s hallucination] ≤ 2h.

– E[number of heads in a row] = 1. (geometric distribution)

– E[j ’s hallucination] = pj × E[number of heads] = pj = 2j .
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Theorem Re-analysis

Theorem: E[P ] ≥ OPT /4 − h.

Proof:

• E[P ] =

from Lemma
︷ ︸︸ ︷
∑

iE[Pi]≥
1

2

∑

iE[Mi] = 1

2
(E[M ] − E[H ]).

• E[M ] ≥ OPTexpert ≥
1

2
OPT.

• E[H ] ≤
∑

j E[j ’s hallucination] ≤ 2h.

– E[number of heads in a row] = 1. (geometric distribution)

– E[j ’s hallucination] = pj × E[number of heads] = pj = 2j .

• Result: E[P ] ≥ OPT /4 − h.
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Summary & Extensions

1. Near Optimal Online Auction: (up to constant factors)

• E[P ] ≥ (1 − ε)OPT−O(h/ε).

• No need to know bid range in advance.
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1. Near Optimal Online Auction: (up to constant factors)

• E[P ] ≥ (1 − ε)OPT−O(h/ε).

(Prior result: (1 − ε)OPT−O(h
ε log log h)) [Blum et al. 2003]

• No need to know bid range in advance.

2. Posted Price Online “Auctions”:

• Result: (1 − ε)OPT−O(h
ε log log h)

(Prior result: (1 − ε)OPT−O(h
ε log h log log h))

x [Blum et al. 2003]

• Open: Constant additive term?
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Overview

1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning ⇒ Online Auction
Result: (1 − ε)OPT−O(h

ε log log h), given [1, h].
x [Blum Kumar Rudra Wu 2003]

3. Kalai’s Expert Learning Algorithm & Analysis.

4. Modifications of Kalai’s Expert Algorithm for Online Auctions.
Result: (1 − ε)OPT−O(h

ε ).

5.=⇒ An Application: Attribute Auctions.
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Attribute Auctions

The Unlimited Supply (Offline) Auction Problem:

Given:

• n identical items for sale.

• n indistinguishable bidders.

Design: Auction with profit near OPT = optimal single price sale.

Solution: E.g., [Myersion 1981, Goldberg Hartline Wright 2001]
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Attribute Auctions

The Unlimited Supply (Offline) Auction Problem:

Given:

• n identical items for sale.

• n indistinguishable bidders.

Design: Auction with profit near OPT = optimal single price sale.

Solution: E.g., [Myersion 1981, Goldberg Hartline Wright 2001]

What if bidders are distinguishible?
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Attribute Auctions

The Attribute Auction Problem:

Given:

• n identical items for sale.

• n bidders, bidder i with attribute ai.

Design: Auction with maximal profit. (use attribute to segment market)
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Attribute Auctions

The Attribute Auction Problem:

Given:

• n identical items for sale.

• n bidders, bidder i with attribute ai.

Design: Auction with maximal profit. (use attribute to segment market)

Truthful mechanism design: For bidder i offer price

pi = f

(
a1, . . . , ai−1, ai, ai+1, . . . , an

b1, . . . , bi−1, ?, bi+1, . . . , bn

)
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Special Case: ai ∈ R

Attribute Auction, AA:

1. Order bids by attribute.

2. Simulate online auction.

3. Reset simulation whenever OPT > γh.
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Special Case: ai ∈ R

Attribute Auction, AA:

1. Order bids by attribute.

2. Simulate online auction.

3. Reset simulation whenever OPT > γh.

Result: performance comparable to approximately optimal auctions on
optimal market segmentations.
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Special Case: ai ∈ R

Attribute Auction, AA:

1. Order bids by attribute.

2. Simulate online auction.

3. Reset simulation whenever OPT > γh.

Result: performance comparable to approximately optimal auctions on
optimal market segmentations.

Open: Multidimensional Attribute Auctions?

Open: Structured Attribute Auctions?
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