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— Online Auction Problem

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]
e Seller has unlimited supply of an item (e.g., digital good).
e Bidders arrive one at a time, bid b1, bs, ... € [1, h]
e Auctioneer decides sale price (or reject) before next bidder arrives.

e Goal: maximize auctioneer profit!
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e Seller has unlimited supply of an item (e.g., digital good).
e Bidders arrive one at a time, bid b1, bs, ... € [1, h]
e Auctioneer decides sale price (or reject) before next bidder arrives.

e Goal: maximize auctioneer profit!

Two Difficulties:

1. Bidders’ values are private (need game-theory).

2. We do not know future (need online analysis).
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e Seller has unlimited supply of an item (e.g., digital good).
e Bidders arrive one at a time, bid b1, bs, ... € [1, h]
e Auctioneer decides sale price (or reject) before next bidder arrives.

e Goal: maximize auctioneer profit!

Two Difficulties:

1. Bidders’ values are private (need game-theory).
Truthful mechanism design: price offered bidder ¢ not function of b;.

2. We do not know future (need online analysis).
Online algorithm: price offered bidder 7 not function of future bids.
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— Online Auction Problem

Online Auction Problem: [Bar-Yossef, Hildrum, Wu 2002]
e Seller has unlimited supply of an item (e.g., digital good).
e Bidders arrive one at a time, bid b1, bs, ... € [1, h]
e Auctioneer decides sale price (or reject) before next bidder arrives.

e Goal: maximize auctioneer profit!

Two Difficulties:

1. Bidders’ values are private (need game-theory).
Truthful mechanism design: price offered bidder ¢ not function of b;.

2. We do not know future (need online analysis).
Online algorithm: price offered bidder 7 not function of future bids.

Conclusion: offer for bidder ¢ based only on prior bids: b1, ..., b;_1.
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)
— Performance Guarantees”

Definition: OPT = optimal single price profit.
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)
— Performance Guarantees”

Definition: OPT = optimal single price profit.

Assumption: bids in [1, ).
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)
— Performance Guarantees”

Definition: OP'T = optimal single price profit.
Assumption: bids in [1, ).
Goal: E|Profitf > OPT /3 — ~h.

e 3 = approximation ratio.

e ~vh = additive loss.
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— Overview

—> 1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning = Online Auction
Result: (1 —¢) OPT — O(2loglog k), given [1, h].
[Blum Kumar Rudra Wu 2003]

3. Kalai's Expert Learning Algorithm & Analysis.

4. Modifications of Kalai's Expert Algorithm for Online Auctions.
Result: (1 — ) OPT —O(2),

5. An Application: Attribute Auctions.
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— Online Learning

Expert Online Learning Problem:
In round 2:

1. Each of k£ experts propose a strategy.
2. We choose an expert’s strategy.
3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

NEAR OPTIMAL ONLINE AUCTIONS — OCTOBER 28, 2004 —



— Online Learning

Expert Online Learning Problem:
In round 2:

1. Each of k experts propose a strategy.
2. We choose an expert’s strategy.
3. Find out how each strategy performed (payoff)
Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm:  (for round 7)

Let /1 be maximum payoff. For expert 7, let s; be total payoff thus far.

Choose expert J's strategy with probability proportional to 2° 23
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— Online Learning

Expert Online Learning Problem:
In round 2:

1. Each of k experts propose a strategy.
2. We choose an expert’s strategy.
3. Find out how each strategy performed (payoff)

Goal: Obtain payoff close to single best expert overall (in hindsight).

Weighted Majority Algorithm:  (for round 7)

Let /1 be maximum payoff. For expert 7, let s; be total payoff thus far.

Choose expert J's strategy with probability proportional to 2° 23

Result: E [payofff = OPT /2 — O(hlogk).
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— Online Learning for Online Auctions
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— Online Learning for Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]
1. Expert 7’s strategy: “use sale price D

2. Best expert = best single price profit.
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Application: (to online auctions) [Blum Kumar Rudra Wu 2003]
1. Expert 7’s strategy: “use sale price D
2. Best expert = best single price profit.

3. For bids in [1, h] use p; = 27. (k = log I experts)
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Application: (to online auctions) [Blum Kumar Rudra Wu 2003]
1. Expert 7’s strategy: “use sale price D
2. Best expert = best single price profit.

3. For bids in [1, h] use p; = 27. (k = log I experts)

Result: E|profitf = OPT /4 — O(hloglogh).
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— Online Learning for Online Auctions

Application: (to online auctions) [Blum Kumar Rudra Wu 2003]
1. Expert 7’s strategy: “use sale price D
2. Best expert = best single price profit.
3. For bids in [1, h] use p; = 27. (k = log I experts)
Result: E|profitf = OPT /4 — O(hloglogh).
Drawbacks:

e hloglog h additive loss.

e Must know h in advance.
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— Overview

1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning = Online Auction
Result: (1 — €) OPT —O(2 loglog h), given [1, h].
[Blum Kumar Rudra Wu 2003]

—> 3. Kalai’'s Expert Learning Algorithm & Analysis.

4. Modifications of Kalai's Expert Algorithm for Online Auctions.
Result: (1 —€) OPT —O(2).

5. An Application: Attribute Auctions.
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— Expert Learning via Hallucination

Kalai's Experts Algorithm:

1. (initialization) For each expert, 7, hallucinate initial score, Sj, as:

h X number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.
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— Expert Learning via Hallucination

Kalai's Experts Algorithm:

1. (initialization) For each expert, 7, hallucinate initial score, Sj, as:

h X number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

Result: E[profitf = OPT /2 — O(hlogk).
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s;
M; = change to max; s; in round ¢

H = maximum hallucination
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P

Lemma: E|P;| > E[M;] /2.
Theorem: E[P| > OPT /2 — O(hlogk).
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P

Lemma: E|P;| > E[M;] /2.
Theorem: E[P| > OPT /2 — O(hlogk).
Proof:

e E[P] = YE[P]
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P

Lemma: E|P;| > E[M;] /2.
Theorem: E[P| > OPT /2 — O(hlogk).

Proof: from Lemma

Ve

e E[P] = Y E[P)>15 E[M,)
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P

Lemma: E|P;| > E[M;] /2.
Theorem: E[P| > OPT /2 — O(hlogk).

Proof: from Lemma

Ve

e E[P] = Y ,E[P]>15"E[M;] = L (E[M] — E[H)).
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P

Lemma: E|P;| > E[M;] /2.

Theorem: E[P| > OPT /2 — O(hlogk).

Proof: from Lemma
o E[P) = Y E[PI> 13 E[M;] = L (E[M] — [ H)).
e E(M| > OPTandE[H]| = O(hlogk).
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— Kalai's Analysis

Definitions: (random variables)

M = final max; s; P = algorithm profit
M; = change to max; s; inround ¢ PP = profitin round ¢

H = maximum hallucination

M=H+Y,M, P=%P

Lemma: E|P;| > E[M;] /2.
Theorem: E[P| > OPT /2 — O(hlogk).

Proof: from Lemma

~

e E[P] = S E[RI> 15 €M) = 1 (E[M] — E[H]).
e E(M| > OPTandE[H]| = O(hlogk).
e Result E[P] > 2 OPT —O(hlogk).
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— Proof of Lemma

Recall Lemma: E|P;| > E[M;] /2.
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— Proof of Lemma

Recall Lemma: E|P;| > E[M;] /2.
Proof: (after round ?2)
1. Tally expert “raw scores” (without hallucination) after round 1.

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score
e Heads: add h to expert's score.

e Tails: discard expert.
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— Proof of Lemma

Recall Lemma: E|P;| > E[M;] /2.
Proof: (after round 7)
1. Tally expert “raw scores” (without hallucination) after round 1.

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score
e Heads: add h to expert’s score.

e Tails: discard expert.
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— Proof of Lemma

Recall Lemma: E|P;| > E[M;] /2.
Proof: (after round 7)
1. Tally expert “raw scores” (without hallucination) after round 1.

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert’s score.

e Tails: discard expert. I I l
1 2 3 4 -k
?2 2 2 2

?
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score
e Heads: add h to expert's score.

e Tails: discard expert.

?

1 2 3 4 -k
?2 h @2 2
?
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I I l
1 2 3 4 -k
h h 2 2
? 0?

?
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I I l
1 2 3 4 -k
h h 2 2
? h
?
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I I l
1 2 3 4 -k
h h 2 2
? h
?

t
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I l
2 3 4 - k
h @2 2
h
?

t

N O O =
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I l
2 3 4 - k
h 2 @
h
t

t
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I l
2 3 4 - k
h h ?
h 2
t

t

N O O =
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I l
2 3 4 - k
h h ?
h 2
t

t

—~ 3 O =
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert. I I I l
2 3 4 - k
h h t
h 2
t

t

—~ 3 O =
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— Proof of Lemma

Recall Lemma: E |[P;] > E[M;] /2.
Proof:
1. Tally expert scores up to including round 2z (without hallucination).

2. Re-hallucinate (repeat until one expert is left):
Flip coin of expert with lowest score

e Heads: add h to expert's score.

e Tails: discard expert.
3. Remaining expert 7: best and still has coin. l
2 3 4 - k
h h t
h 2
t

t

—~ 3 O =
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - k

h h h t t

h h ?

t t
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - k

h h h t t

h h h

t t ?
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads.

h t
h
t

3 4
t

—~ 3 O =

h
h
?

Recall: j's payoff < h.
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads.

h t
h
t

3 4
t

—~ 3 O =

h
h
?

Recall: j's payoff < h.

=> J best before round 7.

= algorithm chose 7.
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - 1 2
h h h t h h h t
h h h h h t
t t 2 t t

Recall: j's payoff < h.
=> 7 best before round 2.

= algorithm chose 7.
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - 1 2 3 4 -
h h h t h h h t
h h h h h t
t t 2 t t
Recall: j's payoff < h. At least: ; > 0.

=> 7 best before round 2.

= algorithm chose 7.
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - 1 2 3 4 -
h h h t h h h t
h h h h h t
t t 2 t t
Recall: j's payoff < h. At least: ; > 0.

=> J best before round 7.

= algorithm chose 7.

Vi, E[P; | jbest] > 2E[M; | j best|
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— Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - 1 2
h h h t h h h t
h h h h h t
t t 2 t t
Recall: j's payoff < h. At least: ; > 0.

=> J best before round 7.

= algorithm chose 7.

V7, E[Pz | jbest] > %E[Mz | jbest] — E[PZ] > E[MZ] /2
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— Overview

1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning = Online Auction
Result: (1 — €) OPT —O(2 loglog h), given [1, h].
[Blum Kumar Rudra Wu 2003]

3. Kalai's Expert Learning Algorithm & Analysis.

—> 4. Modifications of Kalai’'s Expert Algorithm for Online Auctions.
Result: (1 —€) OPT —O(2).

5. An Application: Attribute Auctions.
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— Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j’s strategy: “use sale price p;”.
2. Best expert = best single price profit.
3. Forbidsin [1,h] use p; = 27. (b = log h experts)
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— Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j’s strategy: “use sale price p;”.
2. Best expert = best single price profit.
3. Forbidsin [1,h| use p; = 27, (k = log h experts)

Modification to Kalai:

1. (initialization) For each expert, 7, hallucinate initial score, s;, as

P; X number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.
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— Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j’s strategy: “use sale price p;”.
2. Best expert = best single price profit.
3. For bidsin [1,h] use p; = 27.

Modification to Kalai:

1. (initialization) For each expert, 7, hallucinate initial score, s;, as

P; X number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.

Analysis:

e Lemma still holds.
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— Recall Proof of Lemma (cont)

Recall: Expert j is best and has coin to flip.

Case 1: j’s coin flips heads. Case 2: j’s coin flips tails.
1 2 3 4 - 1 2 3 4 -
h h h t h h h t
h h h h h t
t t 2 t t

Recall: At least: F; > 0.

= algorithm chose 7.

V7, E[Pz | jbest] > %E[Mz | jbest] — E[PZ] > E[MZ] /2
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— Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j’s strategy: “use sale price p;”.
2. Best expert = best single price profit.
3. For bidsin [1, h] use p; = 27. (k = log h)

Modification to Kalai:

1. (initialization) For each expert, 7, halucinate initial score as

P; X number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.
Analysis:

e Lemma still holds.
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— Adaptation to Online Auction

Recall Application: (to online auctions)

1. Expert j’s strategy: “use sale price p;”.
2. Best expert = best single price profit.
3. For bidsin [1, h] use p; = 27. (k = log h)

Modification to Kalai:

1. (initialization) For each expert, 7, halucinate initial score as

P; X number of heads flipped in a row.

2. Run deterministic “go with best expert” algorithm.
Analysis:
e Lemma still holds.

e Theorem improves: E|payoff| > OPT /4 — h.
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— Theorem Re-analysis

Theorem: E[P] > OPT /4 — h.

Proof: from Lemma

~

e E[P] = S EP] 215" M) = } (E[M] — E[H))

i EM] 2 OPTexpert

NEAR OPTIMAL ONLINE AUCTIONS — OCTOBER 28, 2004 —



— Theorem Re-analysis

Theorem: E[P| > OPT /4 — h.

Proof: from Lemma

e E[P] = S EP] 215" M) = } (E[M] — E[H))

e E[M] > OPTepers > 5 OPT.
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— Theorem Re-analysis

Theorem: E[P| > OPT /4 — h.

Proof: from Lemma

~

e E[P] = S EP] 215" M) = } (E[M] — E[H))

1
2

e E[M] > OPTepers > 5 OPT.

e E[H]| <), E[j's hallucination| < 2h
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— Theorem Re-analysis

Theorem: E[P| > OPT /4 — h.

Proof: from Lemma

~

e E[P] = S EP] 215" M) = } (E[M] — E[H))

e E[M] > OPTepers > 5 OPT.

e E|H| <) . E|j’s hallucination] < 2h
4] J

- E:number of heads in a row] — 1. (geometric distribution)

— E[j’s hallucination] = p; X E[number of heads] = p; = 27.
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— Theorem Re-analysis

Theorem: E[P| > OPT /4 — h.

Proof: from Lemma

~

e E[P] = S EP] 215" M) = } (E[M] — E[H))

e E[M] > OPTepers > 5 OPT.

e E|H| <) . E|j’s hallucination] < 2h
4] J

- E:number of heads in a row] — 1. (geometric distribution)

— E[j’s hallucination] = p; X E[number of heads] = p; = 27.

e Result: E[P| > OPT /4 — h.
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— Summary & Extensions

1. Near Optimal Online Auction: (up to constant factors)

e E|P| > (1—¢) OPT—0O(h/e).

e No need to know bid range in advance.
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— Summary & Extensions

1. Near Optimal Online Auction: (up to constant factors)

e E|P| > (1—¢) OPT—0O(h/e).
(Prior result: (1 — ¢) OPT —O(% log log h)) [Blum et al. 2003]

e No need to know bid range in advance.
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— Summary & Extensions

1. Near Optimal Online Auction: (up to constant factors)

e E|P| > (1—¢) OPT—0O(h/e).
(Prior result: (1 — ¢) OPT —O(% log log h)) [Blum et al. 2003]

e No need to know bid range in advance.

2. Posted Price Online “Auctions™:
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— Summary & Extensions

1. Near Optimal Online Auction: (up to constant factors)

e E|P| > (1—¢) OPT—0O(h/e).
(Prior result: (1 — ¢) OPT —O(% log log h)) [Blum et al. 2003]

e No need to know bid range in advance.

2. Posted Price Online “Auctions’:
e Result: (1 — ) OPT —O(% loglog h)

e Open:. Constant additive term?
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— Summary & Extensions

1. Near Optimal Online Auction: (up to constant factors)

e E|P| > (1—¢) OPT—0O(h/e).
(Prior result: (1 — ¢) OPT —O(% log log h)) [Blum et al. 2003]

e No need to know bid range in advance.

2. Posted Price Online “Auctions’:
e Result: (1 — ) OPT —O(% loglog h)

(Prior result: (1 — €) OPT —O(2 log hloglog h))
[Blum et al. 2003]

e Open: Constant additive term?
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— Overview

1. Standard Expert Learning Algorithm (Weighted Majority).

2. Online (Expert) Learning = Online Auction
Result: (1 — €) OPT —O(2 loglog h), given [1, h].
[Blum Kumar Rudra Wu 2003]

3. Kalai's Expert Learning Algorithm & Analysis.

4. Modifications of Kalai's Expert Algorithm for Online Auctions.

Result: (1 —€) OPT —O(2).

—> 5. An Application: Attribute Auctions.
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— Attribute Auctions

The Unlimited Supply (Offline) Auction Problem:

Given:
e 7N identical items for sale.
e 1 indistinguishable bidders.

Design: Auction with profit near OPT = optimal single price sale.

Solution: E.g., [Myersion 1981, Goldberg Hartline Wright 2001]
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— Attribute Auctions

The Unlimited Supply (Offline) Auction Problem:

Given:
e 7N identical items for sale.
e 1 indistinguishable bidders.

Design: Auction with profit near OPT = optimal single price sale.

Solution: E.g., [Myersion 1981, Goldberg Hartline Wright 2001]

What if bidders are distinguishible?
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Attribute Auctions

—

The Attribute Auction Problem:

Given:
e 7 Identical items for sale.
e 1 bidders, bidder 7 with attribute a;.

Design: Auction with maximal profit. (use attribute to segment market)
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— Attribute Auctions

The Attribute Auction Problem:

Given:
e 7 Identical items for sale.
e 1 bidders, bidder 7 with attribute a;.

Design: Auction with maximal profit. (use attribute to segment market)

Truthful mechanism design:  For bidder 7 offer price

ar, ..., Q;-1, 0« dj41, -.., 0UAn
pi=11 (

bla SR b’i—17 ?7 bi—|—17 R b’n
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—— Special Case: a; € R

Attribute Auction, AA:
1. Order bids by attribute.
2. Simulate online auction.

3. Reset simulation whenever OPT > ~h.
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—— Special Case: a; € R

Attribute Auction, AA:
1. Order bids by attribute.
2. Simulate online auction.

3. Reset simulation whenever OPT > ~h.

Result: performance comparable to approximately optimal auctions on
optimal market segmentations.
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—— Special Case: a; € R

Attribute Auction, AA:
1. Order bids by attribute.
2. Simulate online auction.

3. Reset simulation whenever OPT > ~h.

Result: performance comparable to approximately optimal auctions on
optimal market segmentations.

Open: Multidimensional Attribute Auctions?

Open: Structured Attribute Auctions?
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