On Nash Equilibria for a Network Creation Game

S. Albers S. Eilts E. Even-Dar Y. Mansour L. Roditty
University of Freiburg Tel-Aviv University

Understand formation of large networks

 Internet, social networks, networks for exchanging goods are product of many selfish agents

• Emerge from distributed uncoordinated spontaneous actions

How costly is lack of coordination?

Network creation game

• *n* agents build connected network

Agent i lays out set of edges to other agents

Edges may by used in both directions

Hardware cost
 QoS cost

Fabrikant, Luthra, Maneva, Papadimitriou, Shenker PODC'03

 $\it n$ agents have to build connected network. Fabrikant, Luthra, Maneva, Papadimitriou, Shenker PODC'03

Network creation game

n agents have to build connected network.

Fabrikant, Luthra, Maneva, Papadimitriou, Shenker PODC'03

Network creation game

n agents have to build a connected network. Fabrikant, Luthra, Maneva, Papadimitriou, Shenker PODC'03

Hardware cost

Cost of $\alpha > 0$ for each edge.

Shortest path distance to agent j, for all $j \neq i$.

Applications

Information services networks

Nodes represent facilities containing data storage; data has to be replicated to other nodes

Social networks

Set of nodes represents a community for disseminating information; edges represent phone calls.

Postal and delivery services

Nodes represent mail office branches; a link indicates that mail can reach endpoints directly

Related work

 Edge installation incurs cost but also yields a benefit; links may fail with certain probability.
 Bala, Goyal 2000; Haller, Sarangi 2000

 Agents receive payments but have costs for routing through traffic Johari, Mannor, Tsitsiklis 2005

Edges are formed if both endpoints agree
 Corbo, Parkes 2005

Problem

Agents
$$V = \{1, \ldots, n\}$$

Strategy of agent i $S_i \subseteq V \setminus \{i\}$

Combination of strategies $\vec{S} = (S_1, \dots, S_n)$

$$G = (V, E)$$

$$E = \bigcup_{i \in V} \bigcup_{j \in S_i} \{i, j\}$$

$$\mathsf{Cost}(i, \vec{S}) = \alpha |S_i| + \sum_{\substack{j \in V \\ j \neq i}} \mathsf{Dist}(i, j)$$

$$\operatorname{Cost}(\vec{S}) = \sum_{i=1}^{n} \operatorname{Cost}(i, \vec{S})$$

Nash equilibria

 \vec{S} forms Nash equilibrium if, for all i,

$$\mathsf{Cost}(i, \vec{S}) \leq \mathsf{Cost}(i, \vec{S'})$$

for all $\vec{S'}$ that differ from \vec{S} only in i-th component

 \vec{S} is strong if inequality is strict; otherwise weak.

 $ec{S}$ is transient if there is a sequence of single-agent strategy changes leading to non-equilibrium state.

Price of anarchy

$$P = \max_{\vec{S} \text{ Nash eq.}} \frac{\mathsf{Cost}(\vec{S})}{\mathsf{Cost}(\mathsf{OPT})}$$

Cost(OPT): social optimum

Koutsoupias, Papadimitriou '99

Previous results

Fabrikant, Luthra, Maneva, Papadimitriou, Shenker PODC'03

- Computing optimal strategy for an agent is NP-hard
- $\alpha < 1$, $\alpha > n^2$: P is constant
- $1 \le \alpha \le n^2$: *P* is bounded by $O(\sqrt{\alpha})$
- Lower bound: $P \geq 3$
- Tree-conjecture: $\exists C \ \forall \alpha > C$ every non-transient Nash equilibrium is tree. If tree-conjecture holds, P is constant, for all α

Our results

Tree-conjecture is wrong: $\forall n \exists \text{graph built by at least } n$ agents that contains cycles and forms strong Nash equilibrium for $1 < \alpha \le \sqrt{n/3}$

$$P = O(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3})$$
 $P \text{ constant for } \alpha \ge 12n \log n$

 $\alpha \in O(\sqrt{n})$: P is constant

 $\alpha \in \Omega(\sqrt{n}), \ \alpha \in O(n)$: *P* increasing, bounded by $O(n^{1/3})$

 $\alpha \in \Omega(n)$: P decreasing, constant for $\alpha \geq 12n \log n$

Our results

Upper bounds can be extended to:

Cost sharing: agent can pay for a fraction of an edge

Weighted game: t_{ij} = traffic sent from agent i to j

$$Cost(i, \vec{S}) = \alpha |S_i| + \sum_{j \neq i} t_{ij} Dist(i, j)$$

Nash equilibrium representing a chordal graph is transient. Such Nash equilibria exist for any n.

In any Nash equilibrium hardware cost is at most 2Cost(OPT).

Upper bound

Nash equilibrium \vec{S} G = (V, E)Shortest path tree rooted at agent i

depth 0

depth 1

 ${\rm depth}\; d$

Upper bound

Nash equilibrium \vec{S} G = (V, E)Shortest path tree rooted at agent i

depth 0

depth 1

 ${\rm depth}\; d$

Cost agent i

Nash equilibrium \vec{S} G = (V, E)

Shortest path tree rooted at agent *i*

depth 0

depth 1

depth d

$$\mathsf{Cost}(i, \vec{S}) \leq \alpha T_i + d(n-1)$$

 $T_i = \#$ tree edges built by agent i

Cost of agent *j*

 $\operatorname{depth} d$

$\overline{\text{Cost of agent } j}$

 $\alpha T_j + \alpha + (d+1)(n-1)$

 ${\rm depth}\; d$

$\overline{\mathbf{Cost}}$ of agent j

 ${\rm depth}\; d$

$$\operatorname{Cost}(j, \vec{S}) \leq \alpha T_j + \alpha + (d+1)(n-1)$$

Cost Nash

$$\mathsf{Cost}(i, \vec{S}) \leq \alpha T_i + d(n-1)$$

$$\mathsf{Cost}(j, \vec{S}) \leq \alpha T_j + \alpha + (d+1)(n-1) \qquad \forall j \neq i$$

$$\mathsf{Cost}(\vec{S}) \le \alpha(n-1) + \alpha(n-1) + (d+1)n(n-1)$$

Price of anarchy

$$\mathsf{Cost}(\vec{S}) \leq 2\alpha(n-1) + (d+1)n(n-1)$$

$$Cost(OPT) \ge \alpha(n-1) + n(n-1)$$

Analysis d

 $V' = \{j \mid j \text{ has depth at most } \lfloor \frac{2}{5}d \rfloor \text{ in shortest path tree} \}$

Case 1: $|V'| \geq \frac{2}{3}n^c$

Case 2: $|V'| < \frac{2}{3}n^c$

c s.t. $\alpha = n^{3c-1}$

 $1/3 \le c \le 1$

Case 1: $|V'| \ge \frac{2}{3}n^c$

$$|V'|\left(\left\lceil \frac{3}{5}d\right\rceil - \left\lfloor \frac{2}{5}d\right\rfloor - 1\right)$$

Case 1: $|V'| \ge \frac{2}{3}n^c$

$$\alpha \ge |V'| \left(\left\lceil \frac{3}{5}d \right\rceil - \left\lfloor \frac{2}{5}d \right\rfloor - 1 \right) \ge |V'| \left(\frac{1}{5}d - 1 \right)$$

$$d \le \frac{15\alpha}{n^c}$$

Case 2:
$$|V'| < \frac{2}{3}n^c$$

 $\exists d_0$ having at most $\frac{2}{3}n^c/\lfloor \frac{1}{5}d \rfloor$ vertices

Case 2: $|V'| < \frac{2}{3}n^c$

$$\alpha \left(\frac{2}{3} n^c / \left\lfloor \frac{1}{5} d \right\rfloor \right) \ge \left\lfloor \frac{1}{5} d \right\rfloor \left(n - \frac{2}{3} n^c \right)$$

$$d \le \frac{15\alpha}{n^c}$$

Price of anarchy

$$\mathsf{Cost}(\vec{S}) \le 2\alpha(n-1) + (15\alpha/n^c + 1)n(n-1)$$

$$Cost(OPT) \ge \alpha(n-1) + n(n-1)$$

$$\alpha = n^{3c-1} \Longrightarrow n^c = (\alpha n)^{1/3}$$

$$P = O(1 + (\min\{\frac{\alpha^2}{n}, \frac{n^2}{\alpha}\})^{1/3})$$

Disproving tree conjecture

 $\forall n$ \exists graph built by at least n agents that contains cycles and forms strong Nash equilibrium for $1 < \alpha \leq \sqrt{n/3}$

Construct geodetic graphs of diameter 2

Geodetic: shortest path between any pair of points is unique

Disproving tree conjecture

Affine plane (A, \mathcal{L})

A set of points \mathcal{L} set of lines

- Any two points are contained in exactly one line.
- Each line contains at least two points.
- For any point x and any line L not containing x, there is a unique line L' that contains x and is disjoint from L.
- There exists a triangle, i.e. there are three points not contained in a line.

Two lines are parallel if disjoint or equal

Parallelism defines equivalence relation on ${\cal L}$

Affine plane

Affine plane AG(2,q), q prime power

- F = GF(q) finite field of order q.
- $A = F^2$ and $\mathcal{L} = \{a + bF \mid a, b \in A, b \neq 0\}$

Properties

- Each line contains *q* points
- q^2 points and q(q+1) lines
- q+1 equivalence classes with q lines

Graph

Affine plane AG(2,q)

$$G = (V, E) \text{ mit } V = A \cup \mathcal{L}$$

- L and L' connected if $L \parallel L'$
- x and L connected if $x \in L$

Orientations

- Edges of [L] form K_q . $|indeg(L') outdeg(L')| \leq 1$
- $x \in L_i^q$ has incoming edges from lines in i-th and (i-1)-st eq. classes that contain x.

Player of a point

Player of a point

Player of a line

Player of a line

Petersen graph

$$q = 2$$

Open problems

Determine exact P, for any α

Determine upper bound on diameter

Study other network creation games