Small Worlds Navigability

Pierre Fraigniaud
Emmanuelle Lebhar
Zvi Lotker

INTERACTION NETWORKS

- Communication networks
- Internet
- Ad hoc and sensor networks
- Societal networks
- The Web
- P2P networks (the unstructured ones)
- Social network
- Acquaintance
- Mail exchanges
- Biology, linguistics, etc.

COMMON STATISTICAL

PROPERTIES

- Low density
- "Small world" properties:
- Average distance between two nodes is small, typically $\mathrm{O}(\log n)$
- The probability p that two distinct neighbors u_{1} and u_{2} of a same node v are neighbors is large.
p = clustering coefficient
- "Scale free" properties:
- Heavy tailed probability distributions (e.g., of the degrees)

GAUSSIAN VS. HEAVY TAIL

RANDOM GRAPHS VS. INTERACTION NETWORKS

- Random graphs $G_{n, p}$ with $p \approx \log (n) / n$
- low clustering coefficient
- Gaussian distribution of the degrees
- Interaction networks
- High clustering coefficient
- Heavy tailed distribution of the degrees

New Problematic

- Why these networks share these properties?
- What model for
- Performance analysis of these networks
- Algorithm design for these networks
- Impact of the measures?
- This talk addresses navigability

Milgram Experiment

- Source person s (e.g., in Wichita)
- Target person t (e.g., in Cambridge)
- Name, professional occupation, city of living, etc.
- Letter transmitted via a chain of individuals related on a personal basis
- Result: "six degrees of separation"

NAVIGABILITY

- Jon Kleinberg (2000)
- Why should there exist short chains of acquaintances linking together arbitrary pairs of strangers?
- Why should arbitrary pairs of strangers be able to find short chains of acquaintances that link them together?
- In other words: how to navigate in a small worlds?

AUGMENTED GRAPHS $\mathrm{H}=\mathrm{G}+\mathrm{D}$

- Individuals as nodes of a graph G
- Edges of G model relations between individuals deducible from their societal positions
- A number k of "long links" are added to G at random, according to the probability distribution D
- Long links model relations between individuals that cannot be deduced from their societal positions

GREEDY ROUTING

IN AUGMENTED GRAPHS

- Source $s \in V(G)$
- Target $t \in V(G)$
- Current node x selects among its $\operatorname{deg}_{\mathrm{G}}(\mathrm{x})+\mathrm{k}$ neighbors the closest to t in G, that is according to the distance function dist $_{G}()$.

Greedy routing in augmented graphs aims at modeling the routing process performed by social entities in Milgram's experiment.

AUGMENTED MESHES

Kleinberg [STOC 2000]
d-dimensional n-node meshes augmented with d-harmonic links

KLEINBERG's THEOREMS

- Greedy routing performs in $O\left(\log ^{2} n / k\right)$ expected \#steps in d-dimensional meshes augmented with k links per node, chosen according to the d -harmonic distribution.
- Note: $\mathrm{k}=\log \mathrm{n} \Rightarrow \mathrm{O}(\log \mathrm{n})$ expect. \#steps
- Greedy routing in d-dimensional meshes augmented with a h-harmonic distribution, $h \neq d$, performs in $\Omega\left(n^{\varepsilon}\right)$ expected \#steps.

Extensions

- Two-step greedy routing: O(log n / loglog n)
- Coppersmith, Gamarnik, Sviridenko (2002)
- Percolation theory
- Manku, Naor, Wieder (2004)
- NoN routing
- Routing with partial knowledge: $\mathrm{O}\left(\log ^{1+1 / d} \mathrm{n}\right)$
- Martel, Nguyen (2004)
- Non-oblivious routing
- Fraigniaud, Gavoille, Paul (2004)
- Oblivious routing
- Decentralized routing: O(log $\left.\mathrm{n}^{*} \log { }^{2} \log \mathrm{n}\right)$
- Lebhar, Schabanel (2004)
- O($\log ^{2} n$) expected \#steps to find the route

NAVIGABLE GRAPHS

- Let $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{R}$ be a function
- An n-node graph G is f-navigable if there exists an augmentation D for G such that greedy routing in G+D performs in at most $f(n)$ expected \#steps.
- I.e., for any two nodes u, v we have

$$
\mathrm{E}_{\mathrm{D}}\left(\text { \#steps }_{u \rightarrow \mathrm{v}}\right) \leq \mathrm{f}(\mathrm{n})
$$

O(POLYLOG(N))-NAVIGABLE

GRAPHS

- Bounded growth graphs
- Definition: $|B(x, 2 r)| \leq \rho|B(x, r)|$
- Duchon, Hanusse, Lebhar, Schabanel $(2005,2006)$
- Bounded doubling dimension
- Definition: Every B(x,2r) can be covered by at most $2^{\text {d }}$ balls of radius r
- Slivkins (2005)
- Graphs of bounded treewidth
- Fraigniaud (2005)
- Graphs excluding a fixed minor
- Abraham, Gavoille (2006)

QUESTION

Are all graphs O(polylog(n))-navigable?

SVILKINS' THEOREM

Any family of graphs with doubling
dimension $O(\log \log n)$ is navigable.

IMPOSSIBILITY RESULT

Theorem

Let d such that

$$
\lim _{n \rightarrow+\infty} \log \log n / d(n)=0
$$

There exists an infinite family of n-node graphs with doubling dimension at most $\mathrm{d}(\mathrm{n})$ that are not O(polylog(n))-navigable.
Consequences:

1. Slivkins' result is tight
2. Not all graphs are O (polylog(n))-navigable

PROOF OF NON-NAVIGABILITY

The graphs H_{d} with $n=p^{d}$ nodes

$$
x=x_{1} x_{2} \ldots x_{d}
$$

is connected to all nodes

$$
y=y_{1} y_{2} \ldots y_{d}
$$

such that $y_{i}=x_{i}+a_{i}$ where

$$
a_{i} \in\{-1,0,+1\}
$$

H_{d} has doubling dimension d

INTUITIVE APPROACH

- Large doubling dimension d
\Rightarrow every nodes $x \in H_{d}$ has choices over exponentially many directions
- The underlying metric of H_{d} is L_{∞}

DIRECTIONS

$$
\delta=\left(\delta_{1}, \ldots, \delta_{d}\right) \text { where } \delta_{i} \in\{-1,0,+1\}
$$

$$
\operatorname{Dir}_{\delta}(u)=\left\{v / v_{i}=u_{i}+x_{i} \delta_{i} \delta_{0,+1} \text { where } x_{i}=1 \ldots p / 2\right\}
$$

CASE OF SYMMETRIC

DISTRIBUTION

-- GENERAL CASE -Diagonals

LINES

p lines in each direction

INTERVALS

CERTIFICATES

v is a certificate for J

COUNTING ARGUMENT

- 2^{d} directions
- Lines are split in intervals of length L
- $n / L \times 2^{d}$ intervals in total
- Every node belongs to many intervals, but can be the certificate of at most one interval
- If $L<2^{d}$ there is one interval J_{0} without certificate

L-1 STEPS FROM S TO T

IN EXPECTATION...

- $n / L \times 2^{d}-n$ intervals without certificate
- $L=2^{d-1} \Rightarrow n$ of the $2 n$ intervals are without certificate
- This is true for any trial of the long links
- Hence $E=E_{D}$ (\#interval without certificate) $\geq n$
- On the other hand:

$$
E=\Sigma_{J} \operatorname{Pr}(J \text { has no certificate })
$$

- Hence there is an interval $J_{0}=[\mathrm{s}, \mathrm{t}]$ such that

$$
\operatorname{Pr}\left(\mathrm{J}_{0} \text { has no certificate }\right) \geq 1 / 2
$$

- Hence $\mathrm{E}_{\mathrm{D}}\left(\#\right.$ steps $\left._{\mathrm{s} \rightarrow \mathrm{t}}\right) \geq(\mathrm{L}-1) / 2$

QED

Remark: The proof still holds even if the long links are not set pairwise independently.

OPEN PROBLEM

- We have considered the worst case:

$$
\max _{u, v} E_{D}\left(\# \text { steps }_{u \rightarrow v}\right)
$$

- What about the average case?

$$
\sum_{u, v} E_{D}\left(\# \text { steps }_{u \rightarrow v}\right) / n^{2}
$$

