Small Worlds Navigability

Pierre Fraigniaud Emmanuelle Lebhar Zvi Lotker

INTERACTION NETWORKS

- Communication networks
 - Internet
 - Ad hoc and sensor networks
- Societal networks
 - The Web
 - P2P networks (the unstructured ones)
- Social network
 - Acquaintance
 - Mail exchanges
- Biology, linguistics, etc.

COMMON STATISTICAL PROPERTIES

- Low density
- "Small world" properties:
 - Average distance between two nodes is small, typically O(log n)
 - The probability p that two distinct neighbors u_1 and u_2 of a same node v are neighbors is large.

p = clustering coefficient

- "Scale free" properties:
 - Heavy tailed probability distributions (e.g., of the degrees)

GAUSSIAN VS. HEAVY TAIL

RANDOM GRAPHS VS. INTERACTION NETWORKS

- Random graphs $G_{n,p}$ with $p \approx \log(n)/n$
 - low clustering coefficient
 - Gaussian distribution of the degrees
- Interaction networks
 - High clustering coefficient
 - Heavy tailed distribution of the degrees

New problematic

- Why these networks share these properties?
- What model for
 - Performance analysis of these networks
 - Algorithm design for these networks
- Impact of the measures?
- This talk addresses navigability

MILGRAM EXPERIMENT

- Source person s (e.g., in Wichita)
- Target person t (e.g., in Cambridge)
 - Name, professional occupation, city of living, etc.
- Letter transmitted via a chain of individuals related on a personal basis
- Result: "six degrees of separation"

NAVIGABILITY

- Jon Kleinberg (2000)
 - Why should there exist short chains of acquaintances linking together arbitrary pairs of strangers?
 - Why should arbitrary pairs of strangers be able to find short chains of acquaintances that link them together?
- In other words: how to navigate in a small worlds?

AUGMENTED GRAPHS H=G+D

- Individuals as nodes of a graph G
 - Edges of G model relations between individuals deducible from their societal positions
- A number k of "long links" are added to G at random, according to the probability distribution D
 - Long links model relations between individuals that cannot be deduced from their societal positions

GREEDY ROUTING

IN AUGMENTED GRAPHS

- Source $s \in V(G)$
- Target $t \in V(G)$
- Current node x selects among its deg_G(x)+k neighbors the closest to t in G, that is according to the distance function dist_G().

Greedy routing in augmented graphs aims at modeling the routing process performed by social entities in Milgram's experiment.

AUGMENTED MESHES KLEINBERG [STOC 2000]

d-dimensional n-node meshes augmented with d-harmonic links

October 2-6, 2006

KLEINBERG'S THEOREMS

 Greedy routing performs in O(log²n / k) expected #steps in d-dimensional meshes augmented with k links per node, chosen according to the d-harmonic distribution.

- Note: $k = \log n \Rightarrow O(\log n)$ expect. #steps

 Greedy routing in d-dimensional meshes augmented with a h-harmonic distribution, h≠d, performs in Ω(n^ε) expected #steps.

EXTENSIONS

- Two-step greedy routing: O(log n / loglog n)
 - Coppersmith, Gamarnik, Sviridenko (2002)
 - Percolation theory
 - Manku, Naor, Wieder (2004)
 - NoN routing
- Routing with partial knowledge: O(log^{1+1/d} n)
 - Martel, Nguyen (2004)
 - Non-oblivious routing
 - Fraigniaud, Gavoille, Paul (2004)
 - Oblivious routing
- Decentralized routing: O(log n * log²log n)
 - Lebhar, Schabanel (2004)
 - O(log²n) expected #steps to find the route

October 2-6, 2006

NAVIGABLE GRAPHS

- Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be a function
- An n-node graph G is f-navigable if there exists an augmentation D for G such that greedy routing in G+D performs in at most f(n) expected #steps.
- I.e., for any two nodes u,v we have $E_D(\#steps_{u \rightarrow v}) \leq f(n)$

O(POLYLOG(N))-NAVIGABLE

GRAPHS

- Bounded growth graphs
 - Definition: $|B(x,2r)| \le \rho |B(x,r)|$
 - Duchon, Hanusse, Lebhar, Schabanel (2005,2006)
- Bounded doubling dimension
 - Definition: Every B(x,2r) can be covered by at most 2^d balls of radius r
 - Slivkins (2005)
- Graphs of bounded treewidth
 - Fraigniaud (2005)
- Graphs excluding a fixed minor
 - Abraham, Gavoille (2006)

QUESTION

Are all graphs O(polylog(n))-navigable?

October 2-6, 2006

DOUBLING DIMENSION

SVILKINS' THEOREM

Any family of graphs with doubling dimension O(loglog n) is navigable.

October 2-6, 2006

IMPOSSIBILITY RESULT

<u>Theorem</u>

Let d such that

$\lim_{n \to +\infty} \log \log n / d(n) = 0$

There exists an infinite family of n-node graphs with doubling dimension at most d(n) that are not O(polylog(n))-navigable.

Consequences:

- 1. Slivkins' result is tight
- 2. Not all graphs are O(polylog(n))-navigable

PROOF OF NON-NAVIGABILITY

The graphs H_d with $n=p^d$ nodes

 $\begin{array}{l} x = x_1 \, x_2 \, \ldots \, x_d \\ \text{is connected to all nodes} \\ y = y_1 \, y_2 \, \ldots \, y_d \\ \text{such that } y_i = x_i + a_i \text{ where} \\ a_i \in \{-1, 0, +1\} \end{array}$

H_d has doubling dimension d

INTUITIVE APPROACH

- Large doubling dimension d
 ⇒ every nodes x ∈ H_d has choices over
 exponentially many directions
- The underlying metric of H_d is L_{∞}

DIRECTIONS

 $δ = (δ_1, ..., δ_d)$ where $δ_i ∈ \{-1, 0, +1\}$ Dir_δ(u)={v / v_i = u_i + x_i δ_i where x_i = 1...p/2}

0,-1

October 2-6, 2006

-- GENERAL CASE --DIAGONALS

LINES

p lines in each direction

October 2-6, 2006

CERTIFICATES

v is a certificate for J

COUNTING ARGUMENT

- 2^d directions
- Lines are split in intervals of length L
- $n/L \times 2^d$ intervals in total
- Every node belongs to many intervals, but can be the certificate of at most one interval
- If L<2^d there is one interval J₀ without certificate

L-1 STEPS FROM S TO T

IN EXPECTATION...

- $n/L \times 2^d$ n intervals without certificate
- $L = 2^{d-1} \Rightarrow n$ of the 2n intervals are without certificate
- This is true for any trial of the long links
- Hence $E = E_D$ (#interval without certificate) $\ge n$
- On the other hand:

 $E = \sum_{J} Pr(J has no certificate)$

- Hence there is an interval $J_0=[s,t]$ such that $Pr(J_0 \text{ has no certificate}) \ge 1/2$
- Hence $E_D(\#steps_{s \rightarrow t}) \ge (L-1)/2$ QED

<u>Remark:</u> The proof still holds even if the long links are not set pairwise independently.

OPEN PROBLEM

- We have considered the worst case:
 max_{u,v} E_D(#steps_{u→v})
- What about the average case?

 $\sum_{u,v} \mathbf{E}_{D}(\#steps_{u \rightarrow v}) / n^{2}$