
An Overview on Compact
Routing

Cyril Gavoille1

1University of Bordeaux, France

2-6 October 2006
2nd Research Workshop on Flexible Network Design

University of Bologna Residential Center Bertinoro (Forl̀ı), Italy

The Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables

The Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables

(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is
determined by either the designer of the routing scheme
(labeled), or an advesary (name-independent).

Labeled: the designer is free to name the nodes according
to the topology and the edge weights of the graph

Name-independent: the input is a graph with fixed node
manes

An overview: Labeled Model

Labels are of polylogarithmic size
Õ(f(n)) = f(n) · polylog(n)

network stretch space/node (bits)

arbitrary 1 n log n [folk]

(2 6 k ∈ N) 4k − 5 Õ(n1/k) [Thorup,Zwick]

tree 1 Õ(1) [TZ/Fraigniaud,G.]

doubling-α dim. 1 + ε log ∆ [Talwar/Slivkins]

Õ(1) [Chan et al./Abraham et al.]

planar 1 + ε Õ(1) [Thorup]

H-minor-free 1 + ε Õ(1) [Abraham,G.]

An overview: Labeled Model

Labels are of polylogarithmic size
Õ(f(n)) = f(n) · polylog(n)

network stretch space/node (bits)

arbitrary 1 n log n [folk]

(2 6 k ∈ N) 4k − 5 Õ(n1/k) [Thorup,Zwick]

tree 1 Õ(1) [TZ/Fraigniaud,G.]

doubling-α dim. 1 + ε log ∆ [Talwar/Slivkins]

Õ(1) [Chan et al./Abraham et al.]

planar 1 + ε Õ(1) [Thorup]

H-minor-free 1 + ε Õ(1) [Abraham,G.]

An overview: Labeled Model

Labels are of polylogarithmic size
Õ(f(n)) = f(n) · polylog(n)

network stretch space/node (bits)

arbitrary 1 n log n [folk]

(2 6 k ∈ N) 4k − 5 Õ(n1/k) [Thorup,Zwick]

tree 1 Õ(1) [TZ/Fraigniaud,G.]

doubling-α dim. 1 + ε log ∆ [Talwar/Slivkins]

Õ(1) [Chan et al./Abraham et al.]

planar 1 + ε Õ(1) [Thorup]

H-minor-free 1 + ε Õ(1) [Abraham,G.]

An overview: Labeled Model

Labels are of polylogarithmic size
Õ(f(n)) = f(n) · polylog(n)

network stretch space/node (bits)

arbitrary 1 n log n [folk]

(2 6 k ∈ N) 4k − 5 Õ(n1/k) [Thorup,Zwick]

tree 1 Õ(1) [TZ/Fraigniaud,G.]

doubling-α dim. 1 + ε log ∆ [Talwar/Slivkins]

Õ(1) [Chan et al./Abraham et al.]

planar 1 + ε Õ(1) [Thorup]

H-minor-free 1 + ε Õ(1) [Abraham,G.]

An overview: Labeled Model

Labels are of polylogarithmic size
Õ(f(n)) = f(n) · polylog(n)

network stretch space/node (bits)

arbitrary 1 n log n [folk]

(2 6 k ∈ N) 4k − 5 Õ(n1/k) [Thorup,Zwick]

tree 1 Õ(1) [TZ/Fraigniaud,G.]

doubling-α dim. 1 + ε log ∆ [Talwar/Slivkins]

Õ(1) [Chan et al./Abraham et al.]

planar 1 + ε Õ(1) [Thorup]

H-minor-free 1 + ε Õ(1) [Abraham,G.]

An overview: Labeled Model

Labels are of polylogarithmic size
Õ(f(n)) = f(n) · polylog(n)

network stretch space/node (bits)

arbitrary 1 n log n [folk]

(2 6 k ∈ N) 4k − 5 Õ(n1/k) [Thorup,Zwick]

tree 1 Õ(1) [TZ/Fraigniaud,G.]

doubling-α dim. 1 + ε log ∆ [Talwar/Slivkins]

Õ(1) [Chan et al./Abraham et al.]

planar 1 + ε Õ(1) [Thorup]

H-minor-free 1 + ε Õ(1) [Abraham,G.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth 1 + ε Õ(1) [Abraham et al.]

doubling-α dim. 9 + ε Õ(1) [Konjevod et al./Abraham et al.]

H-minor-free O(1) Õ(1) [Abraham et al.]

(unweighted)

trees 2k − 1 Õ(n1/k) [Laing]

arbitrary 3 Õ(
√

n) [A.,G.,Malkhi,Nisan,Thorup]

O(k22k) Õ(n1/k) [Arias et al./Awerbuch,Peleg]

O(k) Õ(n1/k) [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth 1 + ε Õ(1) [Abraham et al.]

doubling-α dim. 9 + ε Õ(1) [Konjevod et al./Abraham et al.]

H-minor-free O(1) Õ(1) [Abraham et al.]

(unweighted)

trees 2k − 1 Õ(n1/k) [Laing]

arbitrary 3 Õ(
√

n) [A.,G.,Malkhi,Nisan,Thorup]

O(k22k) Õ(n1/k) [Arias et al./Awerbuch,Peleg]

O(k) Õ(n1/k) [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth 1 + ε Õ(1) [Abraham et al.]

doubling-α dim. 9 + ε Õ(1) [Konjevod et al./Abraham et al.]

H-minor-free O(1) Õ(1) [Abraham et al.]

(unweighted)

trees 2k − 1 Õ(n1/k) [Laing]

arbitrary 3 Õ(
√

n) [A.,G.,Malkhi,Nisan,Thorup]

O(k22k) Õ(n1/k) [Arias et al./Awerbuch,Peleg]

O(k) Õ(n1/k) [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth 1 + ε Õ(1) [Abraham et al.]

doubling-α dim. 9 + ε Õ(1) [Konjevod et al./Abraham et al.]

H-minor-free O(1) Õ(1) [Abraham et al.]

(unweighted)

trees 2k − 1 Õ(n1/k) [Laing]

arbitrary 3 Õ(
√

n) [A.,G.,Malkhi,Nisan,Thorup]

O(k22k) Õ(n1/k) [Arias et al./Awerbuch,Peleg]

O(k) Õ(n1/k) [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth 1 + ε Õ(1) [Abraham et al.]

doubling-α dim. 9 + ε Õ(1) [Konjevod et al./Abraham et al.]

H-minor-free O(1) Õ(1) [Abraham et al.]

(unweighted)

trees 2k − 1 Õ(n1/k) [Laing]

arbitrary 3 Õ(
√

n) [A.,G.,Malkhi,Nisan,Thorup]

O(k22k) Õ(n1/k) [Arias et al./Awerbuch,Peleg]

O(k) Õ(n1/k) [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth 1 + ε Õ(1) [Abraham et al.]

doubling-α dim. 9 + ε Õ(1) [Konjevod et al./Abraham et al.]

H-minor-free O(1) Õ(1) [Abraham et al.]

(unweighted)

trees 2k − 1 Õ(n1/k) [Laing]

arbitrary 3 Õ(
√

n) [A.,G.,Malkhi,Nisan,Thorup]

O(k22k) Õ(n1/k) [Arias et al./Awerbuch,Peleg]

O(k) Õ(n1/k) [Abraham et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled ⇒ lower bound for name-indep

network stretch space/node (bits)

arbitrary < 1.4 Ω(n log n) [G.,Pérennès.]

< 3 Ω(n) [G.,Gengler]

(only k = 1, 2, 3, 5) < 2k + 1 Ω(n1/k) [Thorup,Zwick]

trees 6 3 Ω(
√

n) [Laing,Rajaraman]

6 9− ε Ω(n(ε/60)2) [Konjevod et al.]

for all k > 1 < 2k + 1 Ω((n log n)1/k) [Abraham et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled ⇒ lower bound for name-indep

network stretch space/node (bits)

arbitrary < 1.4 Ω(n log n) [G.,Pérennès.]

< 3 Ω(n) [G.,Gengler]

(only k = 1, 2, 3, 5) < 2k + 1 Ω(n1/k) [Thorup,Zwick]

trees 6 3 Ω(
√

n) [Laing,Rajaraman]

6 9− ε Ω(n(ε/60)2) [Konjevod et al.]

for all k > 1 < 2k + 1 Ω((n log n)1/k) [Abraham et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled ⇒ lower bound for name-indep

network stretch space/node (bits)

arbitrary < 1.4 Ω(n log n) [G.,Pérennès.]

< 3 Ω(n) [G.,Gengler]

(only k = 1, 2, 3, 5) < 2k + 1 Ω(n1/k) [Thorup,Zwick]

trees 6 3 Ω(
√

n) [Laing,Rajaraman]

6 9− ε Ω(n(ε/60)2) [Konjevod et al.]

for all k > 1 < 2k + 1 Ω((n log n)1/k) [Abraham et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled ⇒ lower bound for name-indep

network stretch space/node (bits)

arbitrary < 1.4 Ω(n log n) [G.,Pérennès.]

< 3 Ω(n) [G.,Gengler]

(only k = 1, 2, 3, 5) < 2k + 1 Ω(n1/k) [Thorup,Zwick]

trees 6 3 Ω(
√

n) [Laing,Rajaraman]

6 9− ε Ω(n(ε/60)2) [Konjevod et al.]

for all k > 1 < 2k + 1 Ω((n log n)1/k) [Abraham et al.]

Theorem [Abraham,G.,Malkhi]

1 Any name-indep. routing scheme using < (n log n)1/k

bits/node has a max stretch > 2k + 1 for some graph.

2 Any name-indep. routing scheme using < (n/k)1/k

bits/node has an average stretch > k/4 for some graph.

Theorem [Abraham,G.,Malkhi]

1 Any name-indep. routing scheme using < (n log n)1/k

bits/node has a max stretch > 2k + 1 for some graph.

2 Any name-indep. routing scheme using < (n/k)1/k

bits/node has an average stretch > k/4 for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg,Upfal
/ G.,Pérennès / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick)
are based on the construction of dense large girth graphs

u is forced to ”know”

2k + 2

u

v
? if stretch< 2k + 1, then

the edge (u, v)

Theorem [Abraham,G.,Malkhi]

1 Any name-indep. routing scheme using < (n log n)1/k

bits/node has a max stretch > 2k + 1 for some graph.

2 Any name-indep. routing scheme using < (n/k)1/k

bits/node has an average stretch > k/4 for some graph.

Erdös Conjecture: ∃ graph of girth 2k+2 with Ω(n1+1/k) edges
(proved only for k = 1, 2, 3, 5). So, the extra (log n)1/k term
cannot be obtained with a girth approach.

Theorem [Abraham,G.,Malkhi]

1 Any name-indep. routing scheme using < (n log n)1/k

bits/node has a max stretch > 2k + 1 for some graph.

2 Any name-indep. routing scheme using < (n/k)1/k

bits/node has an average stretch > k/4 for some graph.

Rem 2: It makes a clear separation between labeled and name-
independent routing, at least for the average stretch.

In the labelel model, O(polylog(n)) space and O(1) average
stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta,

Kleinberg et al. (FOCS05)]

In the name-indep model, if space is O(polylog(n)), then the
average stretch must be Ω(log n/ log log n) for some graphs.

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing
scheme for G

An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of G, and the space for each
node must be ≈ the average degree of G

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing
scheme for G

An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of G, and the space for each
node must be ≈ the average degree of G

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing
scheme for G

An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of G, and the space for each
node must be ≈ the average degree of G

Example: Stretch-3 for Arbitrary Metric

u
v

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

v
u

Bu = the set of
√

n ln n closest nodes from u

L = a hitting of {Bu | u ∈ V } of size 6
√

n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

v

`u

u

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

v

`u

u

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L

⇒ |E| 6
∑

u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

v

`u

u

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

v

`u

u

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

`u

v
u

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Example: Stretch-3 for Arbitrary Metric

`u

v
u

Bu = the set of
√

n ln n closest nodes from u
L = a hitting of {Bu | u ∈ V } of size 6

√
n ln n

Overlay: u → w, ∀w ∈ Bu and u → `, ∀` ∈ L
⇒ |E| 6

∑
u(|Bu|+ |L|) = Õ(n3/2)

Routing: If v ∈ Bu, route u → v, else u → `u → v

Rem: `u → v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)

Some Results in the Metric Model

Both labeled and name-independent variants exist ...

metric stretch average degree

Euclidian O(1) O(1) [Abraham,Malkhi/Hassin,Peleg]

doubling-α dim. 1 + ε Õ(log ∆) [Talwar/Chan et al./Slivkins]

1 + ε Õ(1) [Abraham et al.]

Some Results in the Metric Model

Both labeled and name-independent variants exist ...

metric stretch average degree

Euclidian O(1) O(1) [Abraham,Malkhi/Hassin,Peleg]

doubling-α dim. 1 + ε Õ(log ∆) [Talwar/Chan et al./Slivkins]

1 + ε Õ(1) [Abraham et al.]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in
directed graphs! The stretch maybe not bounded if o(n) bits
of memory are used, even in strongly connected digraphs
[Thorup,Zwick]

New measure: roundtrip stretch factor

stretch =
|route(u, v)|+ |route(v, u)|

dist(u, v) + dist(v, u)

Rem: dist(u, v) + dist(v, u) is now a distance function

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in
directed graphs! The stretch maybe not bounded if o(n) bits
of memory are used, even in strongly connected digraphs
[Thorup,Zwick]

New measure: roundtrip stretch factor

stretch =
|route(u, v)|+ |route(v, u)|

dist(u, v) + dist(v, u)

Rem: dist(u, v) + dist(v, u) is now a distance function

Some Results for Arbitrary Digraphs

Labeled: [Roditty,Thorup,Zwick - SODA ’02]

stretch=4k + ε stretch=3

space=Õ(ε−1kn1/k log ∆) space=Õ(
√

n)
labels=o(ε−1k log2 n log ∆) labels=o(log2 n)

Name-independent: [Arias,Cowen,Laing - PODC ’03]

stretch=O(k2) stretch=6

space=Õ(ε−1kn1/k log ∆) space=Õ(
√

n)
labels=o(ε−1k2 log2 n log ∆) labels=o(log2 n)

Lower bound: if stretch < 2, then Ω(n) bits is required

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch 6 4k − 5 for Õ(n1/k) memory.
Optimal only for k = 1, 2. The lower bound on
the stretch is 6 2k − 1. For k = 4, the lower
bound is not known to be 2k − 1 (the Erdös
conjecture is proved only for k = 1, 2, 3, 5)

Q2: Name-independent = labeled ???
For k = 1, 2, the same bounds hold.

Q3: Directed = Undirected???

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch 6 4k − 5 for Õ(n1/k) memory.
Optimal only for k = 1, 2. The lower bound on
the stretch is 6 2k − 1. For k = 4, the lower
bound is not known to be 2k − 1 (the Erdös
conjecture is proved only for k = 1, 2, 3, 5)

Q2: Name-independent = labeled ???
For k = 1, 2, the same bounds hold.

Q3: Directed = Undirected???

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch 6 4k − 5 for Õ(n1/k) memory.
Optimal only for k = 1, 2. The lower bound on
the stretch is 6 2k − 1. For k = 4, the lower
bound is not known to be 2k − 1 (the Erdös
conjecture is proved only for k = 1, 2, 3, 5)

Q2: Name-independent = labeled ???
For k = 1, 2, the same bounds hold.

Q3: Directed = Undirected???

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what’s the best
stretch with Õ(1) memory? Currently stretch
≈ 17.

Q5: Labeled treewidth-k & shortest path:
o(k log2 n)-bit labels? True for trees k = 1
[Fraigniaud,G.] and weighted outerplanar k = 2
[Dieng, G.]: Θ(log2 n/ log log n) bits are enough
and necessary.

Q6: Shortest path in planar with Õ(1) labels:
Ω(n1/3) . . . O(n) (currently 7.18n bits [Lu ’02])

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what’s the best
stretch with Õ(1) memory? Currently stretch
≈ 17.

Q5: Labeled treewidth-k & shortest path:
o(k log2 n)-bit labels? True for trees k = 1
[Fraigniaud,G.] and weighted outerplanar k = 2
[Dieng, G.]: Θ(log2 n/ log log n) bits are enough
and necessary.

Q6: Shortest path in planar with Õ(1) labels:
Ω(n1/3) . . . O(n) (currently 7.18n bits [Lu ’02])

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what’s the best
stretch with Õ(1) memory? Currently stretch
≈ 17.

Q5: Labeled treewidth-k & shortest path:
o(k log2 n)-bit labels? True for trees k = 1
[Fraigniaud,G.] and weighted outerplanar k = 2
[Dieng, G.]: Θ(log2 n/ log log n) bits are enough
and necessary.

Q6: Shortest path in planar with Õ(1) labels:
Ω(n1/3) . . . O(n) (currently 7.18n bits [Lu ’02])

Future Works (1/2)

W1: Õ(deg(u)) with stretch O(1) for general graphs?

W2: Bounded degree?
(sparse graphs are known to be non-compact.

Bounded degree nodes “increase” distances, so

stretch tends to 1. No lower bounds is known.

Bounded degree includes expanders ...)

W3: Routing with additive stretch?
(initial works in random power law networks

[Brady,Cowen ’06]. The addtive stretch and the

polylog labels depend on the graph parameter only.

Works well in practice. Connection with distance

labeling)

Future Works (1/2)

W1: Õ(deg(u)) with stretch O(1) for general graphs?

W2: Bounded degree?
(sparse graphs are known to be non-compact.

Bounded degree nodes “increase” distances, so

stretch tends to 1. No lower bounds is known.

Bounded degree includes expanders ...)

W3: Routing with additive stretch?
(initial works in random power law networks

[Brady,Cowen ’06]. The addtive stretch and the

polylog labels depend on the graph parameter only.

Works well in practice. Connection with distance

labeling)

Future Works (1/2)

W1: Õ(deg(u)) with stretch O(1) for general graphs?

W2: Bounded degree?
(sparse graphs are known to be non-compact.

Bounded degree nodes “increase” distances, so

stretch tends to 1. No lower bounds is known.

Bounded degree includes expanders ...)

W3: Routing with additive stretch?
(initial works in random power law networks

[Brady,Cowen ’06]. The addtive stretch and the

polylog labels depend on the graph parameter only.

Works well in practice. Connection with distance

labeling)

Future Works (2/2)

W4: Average stretch? ε-slack routing?
(labeled and name-indep differ. Average stretch &

additive stretch are interesting in practice)

W5: Dynamic routing: Yes [Korman,Peleg] but not yet
compact ...

W6: Distributed algorithms for constructing tables?
Yes [Frederickson’90] for some speficic graphs
(planar). Distributed implementation is possible
but ... complicated!

Future Works (2/2)

W4: Average stretch? ε-slack routing?
(labeled and name-indep differ. Average stretch &

additive stretch are interesting in practice)

W5: Dynamic routing: Yes [Korman,Peleg] but not yet
compact ...

W6: Distributed algorithms for constructing tables?
Yes [Frederickson’90] for some speficic graphs
(planar). Distributed implementation is possible
but ... complicated!

Future Works (2/2)

W4: Average stretch? ε-slack routing?
(labeled and name-indep differ. Average stretch &

additive stretch are interesting in practice)

W5: Dynamic routing: Yes [Korman,Peleg] but not yet
compact ...

W6: Distributed algorithms for constructing tables?
Yes [Frederickson’90] for some speficic graphs
(planar). Distributed implementation is possible
but ... complicated!

Thank you!

