An Overview on Compact Routing

Cyril Gavoille¹

¹University of Bordeaux, France

2-6 October 2006 2nd Research Workshop on Flexible Network Design University of Bologna Residential Center Bertinoro (Forli), Italy

The Compact Routing Problem

Input: a network G (a weighted connected graph) Ouput: a routing scheme for G

A *routing scheme* is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

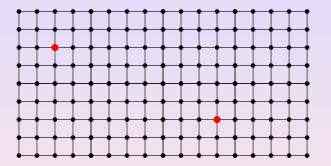
The Compact Routing Problem

Input: a network G (a weighted connected graph) Ouput: a routing scheme for G

A *routing scheme* is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

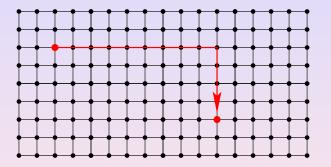
Goal: to minimize the size of the routing tables

Example: Grid with X,Y-coordinates



Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates



Routing algorithm: X,Y-routing

Space = size of the largest local routing tables

Space = size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures) In the grid example: space = $O(\log n)$ bits

In the grid example: stretch = 1 (shortest path)

Space = size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures) In the grid example: space = $O(\log n)$ bits Stretch = ratio between length of the route and distance $|route(x, y)| \leq stretch \cdot dist(x, y)$

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best space-stretch trade-off

The destination enters the network with its **name**, which is determined by either the designer of the routing scheme (labeled), or an advesary (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph Name-independent: the input is a graph with fixed node manes

network	stretch	space/noo	de (bits)
arbitrary	1	$n\log n$	[folk]

ne	twork	stretch	space/nod	e (bits)
	itrary	1	$n \log n$	[folk]
(2 ≤	$k \in \mathbb{N}$)	4k - 5	$\tilde{O}(n^{1/k})$	[Thorup,Zwick]

network	stretch	space/no	de (bits)
$\begin{array}{l} arbitrary \\ (2\leqslant k\in\mathbb{N}) \end{array}$	$1 \\ 4k - 5$	$n \log n$ $\tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]

network	stretch	space/no	de (bits)
arbitrary	1	$n\log n$	[folk]
$(2\leqslant k\in\mathbb{N})$	4k - 5	$\tilde{O}(n^{1/k})$	[Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim.	$1 + \varepsilon$	$\log \Delta$	[Talwar/Slivkins]
		$ ilde{O}(1)$ [Ch	an et al./Abraham et al.]

network	stretch	space/no	de (bits)
arbitrary	1	$n\log n$	[folk]
$(2 \leqslant k \in \mathbb{N})$	4k - 5	$\tilde{O}(n^{1/k})$	[Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim.	$1 + \varepsilon$	$\log \Delta$	[Talwar/Slivkins]
		$ ilde{O}(1)$ [Cha	an et al./Abraham et al.]
planar	$1 + \varepsilon$	$\tilde{O}(1)$	[Thorup]

network	stretch	space/node (bits)
$\begin{array}{l} arbitrary \\ (2\leqslant k\in\mathbb{N}) \end{array}$	$1 \\ 4k - 5$	$egin{array}{ccc} n \log n & [{ m folk}] \ ilde{O}(n^{1/k}) & [{ m Thorup}, { m Zwick}] \end{array}$
tree	1	$\tilde{O}(1)$ [TZ/Fraigniaud,G.]
doubling- α dim.	$1 + \varepsilon$	$ \begin{array}{l} \log \Delta \qquad \mbox{[Talwar/Slivkins]} \\ \tilde{O}(1) \mbox{[Chan et al./Abraham et al.]} \end{array} $
planar	$1 + \varepsilon$	$\tilde{O}(1)$ [Thorup]
H-minor-free	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham,G.]

network	stretch	space/nc	ode (bits)
bounded growth	$1 + \varepsilon$	$\tilde{O}(1)$	[Abraham et al.]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
doubling- $lpha$ dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
doubling- α dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free (unweighted)	O(1)	$\tilde{O}(1)$ [Abraham et al.]

network	stretch	space/node (bits))
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Ab	raham et al.]
doubling- α dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod e	t al./Abraham et al.]
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$ [Ab	raham et al.]
trees	$2^{k} - 1$	$\tilde{O}(n^{1/k})$	[Laing]

network	stretch	space/node (bits)
bounded growth doubling- α dim.	$1 + \varepsilon$ $9 + \varepsilon$	$\tilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free (unweighted)	O(1)	$\tilde{O}(1)$ [Abraham et al.]
trees	$2^{k} - 1$	$ ilde{O}(n^{1/k})$ [Laing]
arbitrary	3	$ ilde{O}(\sqrt{n})$ [A.,G.,Malkhi,Nisan,Thorup]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
doubling- $lpha$ dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]
$H ext{-minor-free}$ (unweighted)	O(1)	$ ilde{O}(1)$ [Abraham et al.]
trees	$2^{k} - 1$	$ ilde{O}(n^{1/k})$ [Laing]
arbitrary	3	$ ilde{O}(\sqrt{n})$ [A.,G.,Malkhi,Nisan,Thorup]
	$O(k^2 2^k)$	$ ilde{O}(n^{1/k})$ [Arias et al./Awerbuch,Peleg]
	O(k)	$ ilde{O}(n^{1/k})$ [Abraham et al.]

Rem: lower bound for labeled \Rightarrow lower bound for name-indep

Rem: lower bound for labeled \Rightarrow lower bound for name-indep				
network	stretch	space/node	(bits)	
arbitrary	< 1.4	$\Omega(n\log n)$	[G.,Pérennès.]	
	< 3	$\Omega(n)$	[G.,Gengler]	
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$	[Thorup,Zwick]	

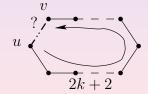
Rem: lower bound for labeled \Rightarrow lower bound for name-indep			
network	stretch	space/node (bits)	
arbitrary	< 1.4	$\Omega(n\log n)$	[G.,Pérennès.]
	< 3	$\Omega(n)$	[G.,Gengler]
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$	[Thorup,Zwick]
trees	≤ 3	$\Omega(\sqrt{n})$	[Laing,Rajaraman]
	$\leqslant 9-\varepsilon$	$\Omega(n^{(\varepsilon/60)^2})$	[Konjevod et al.]

Rem: lower bound for labeled \Rightarrow lower bound for name-indep				
network	stretch	space/node (bits)		
arbitrary	< 1.4	$\Omega(n \log n)$ [G.,Pérennès.]		
	< 3	$\Omega(n)$ [G.,Gengler]		
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$ [Thorup,Zwick]		
trees	$\leqslant 3$	$\Omega(\sqrt{n})$ [Laing,Rajaraman]		
	$\leqslant 9-\varepsilon$	$\Omega(n^{(arepsilon/60)^2})$ [Konjevod et al.]		
for all $k \geqslant 1$	< 2k + 1	$\Omega((n\log n)^{1/k})$ [Abraham et al.]		

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- **2** Any name-indep. routing scheme using $< (n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

- Any name-indep. routing scheme using < (n log n)^{1/k} bits/node has a max stretch ≥ 2k + 1 for some graph.
- **2** Any name-indep. routing scheme using $< (n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg,Upfal / G.,Pérennès / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick) are based on the construction of **dense large girth** graphs



if stretch < 2k + 1, then u is forced to "know" the edge (u, v)

- Any name-indep. routing scheme using < (n log n)^{1/k} bits/node has a max stretch ≥ 2k + 1 for some graph.
- **2** Any name-indep. routing scheme using $< (n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Erdös Conjecture: \exists graph of girth 2k+2 with $\Omega(n^{1+1/k})$ edges (proved only for k = 1, 2, 3, 5). So, the extra $(\log n)^{1/k}$ term **cannot** be obtained with a girth approach.

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- **2** Any name-indep. routing scheme using $< (n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Rem 2: It makes a clear separation between labeled and nameindependent routing, at least for the average stretch.

In the **labelel** model, O(polylog(n)) space and O(1) average stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta, Kleinberg et al. (FOCS05)]

In the name-indep model, if space is O(polylog(n)), then the average stretch must be $\Omega(\log n / \log \log n)$ for some graphs.

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)Ouput: an overlay network G = (V, E), and a routing scheme for G

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)Ouput: an overlay network G = (V, E), and a routing scheme for G

An extra complexity measure: the size |E| of the overlay

The Metric Model

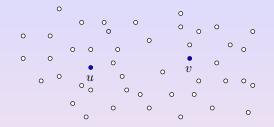
A weaker model, but conceptually easier

Input: a metric space (V, d)Ouput: an overlay network G = (V, E), and a routing scheme for G

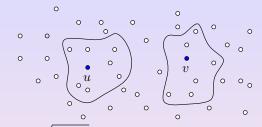
An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of G, and the space for each node must be \approx the average degree of G

Example: Stretch-3 for Arbitrary Metric

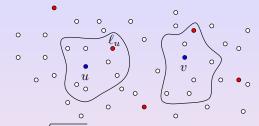


Example: Stretch-3 for Arbitrary Metric

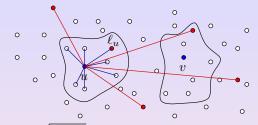


 B_u = the set of $\sqrt{n \ln n}$ closest nodes from u

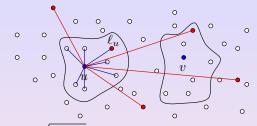
Example: Stretch-3 for Arbitrary Metric



 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from uL = a hitting of $\{B_u \mid u \in V\}$ of size $\leqslant \sqrt{n \ln n}$

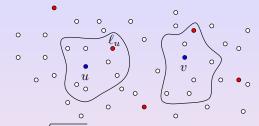


 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from u L = a hitting of $\{B_u \mid u \in V\}$ of size $\leq \sqrt{n \ln n}$ Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$



 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from uL = a hitting of $\{B_u \mid u \in V\}$ of size $\leq \sqrt{n \ln n}$

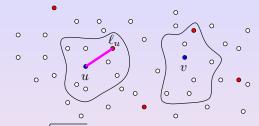
 $\begin{array}{l} \text{Overlay: } u \to w, \, \forall w \in B_u \text{ and } u \to \ell, \, \forall \ell \in L \\ \Rightarrow |E| \leqslant \sum_u (|B_u| + |L|) = \tilde{O}(n^{3/2}) \end{array}$



 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from uL = a hitting of $\{B_u \mid u \in V\}$ of size $\leq \sqrt{n \ln n}$

 $\begin{array}{l} \text{Overlay: } u \to w, \, \forall w \in B_u \text{ and } u \to \ell, \, \forall \ell \in L \\ \Rightarrow |E| \leqslant \sum_u (|B_u| + |L|) = \tilde{O}(n^{3/2}) \end{array}$

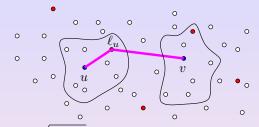
ROUTING: IF $v \in B_u$, ROUTE $u \to v$, ELSE $u \to \ell_u \to v$



 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from uL = a hitting of $\{B_u \mid u \in V\}$ of size $\leqslant \sqrt{n \ln n}$

 $\begin{array}{l} \text{Overlay: } u \to w, \, \forall w \in B_u \text{ and } u \to \ell, \, \forall \ell \in L \\ \Rightarrow |E| \leqslant \sum_u (|B_u| + |L|) = \tilde{O}(n^{3/2}) \end{array}$

Routing: If $v \in B_u$, route $u \to v$, else $u \to \ell_u \to v$



 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from uL = a hitting of $\{B_u \mid u \in V\}$ of size $\leqslant \sqrt{n \ln n}$

Overlay:
$$u \to w$$
, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$
 $\Rightarrow |E| \leq \sum_u (|B_u| + |L|) = \tilde{O}(n^{3/2})$

Routing: If $v \in B_u$, route $u \to v$, else $u \to \ell_u \to v$

Rem: $\ell_u \rightarrow v$ is not necessarily easy to implement in the graph model (usually simulated with some tree routings)

Some Results in the Metric Model

Both labeled and name-independent variants exist ...

metric stretch average degree

Euclidian O(1) = O(1) [Abraham, Malkhi/Hassin, Peleg]

Some Results in the Metric Model

Both labeled and name-independent variants exist ...

 $\begin{array}{c|c} \mbox{metric} & \mbox{stretch} & \mbox{average degree} \\ \\ \mbox{Euclidian} & O(1) & O(1) \ [\mbox{Abraham,Malkhi/Hassin,Peleg}] \\ \mbox{doubling-}\alpha \ \mbox{dim.} & 1 + \varepsilon & \tilde{O}(\log \Delta) \ [\mbox{Talwar/Chan et al.}/Slivkins] \\ \\ \mbox{1 + } \varepsilon & \tilde{O}(1) & \ [\mbox{Abraham et al.}] \end{array}$

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if o(n) bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if o(n) bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

New measure: roundtrip stretch factor

stretch =
$$\frac{|\operatorname{route}(u, v)| + |\operatorname{route}(v, u)|}{\operatorname{dist}(u, v) + \operatorname{dist}(v, u)}$$

Rem: dist(u, v) + dist(v, u) is now a distance function

Some Results for Arbitrary Digraphs

Labeled:[Roditty, Thorup, Zwick - SODA '02]stretch= $4k + \varepsilon$ stretch=3space= $\tilde{O}(\varepsilon^{-1}kn^{1/k}\log\Delta)$ space= $\tilde{O}(\sqrt{n})$ labels= $o(\varepsilon^{-1}k\log^2 n\log\Delta)$ labels= $o(\log^2 n)$

Lower bound: if stretch < 2, then $\Omega(n)$ bits is required

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch $\leq 4k - 5$ for $O(n^{1/k})$ memory. Optimal only for k = 1, 2. The lower bound on the stretch is $\leq 2k - 1$. For k = 4, the lower bound is not known to be 2k - 1 (the Erdös conjecture is proved only for k = 1, 2, 3, 5)

Open Questions: For Arbitrary Networks

- **Q1:** Labeled: stretch $\leq 4k 5$ for $\tilde{O}(n^{1/k})$ memory. Optimal only for k = 1, 2. The lower bound on the stretch is $\leq 2k - 1$. For k = 4, the lower bound is not known to be 2k - 1 (the Erdös conjecture is proved only for k = 1, 2, 3, 5)
- **Q2:** Name-independent = labeled ??? For k = 1, 2, the same bounds hold.

Open Questions: For Arbitrary Networks

- **Q1:** Labeled: stretch $\leq 4k 5$ for $O(n^{1/k})$ memory. Optimal only for k = 1, 2. The lower bound on the stretch is $\leq 2k - 1$. For k = 4, the lower bound is not known to be 2k - 1 (the Erdös conjecture is proved only for k = 1, 2, 3, 5)
- **Q2:** Name-independent = labeled ??? For k = 1, 2, the same bounds hold.
- **Q3:** Directed = Undirected???

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17 .

Open Questions: For Specific Networks

- **Q4:** Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17 .
- **Q5:** Labeled treewidth-k & shortest path: $o(k \log^2 n)$ -bit labels? True for trees k = 1[Fraigniaud,G.] and weighted outerplanar k = 2[Dieng, G.]: $\Theta(\log^2 n / \log \log n)$ bits are enough and necessary.

Open Questions: For Specific Networks

- **Q4:** Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17 .
- **Q5:** Labeled treewidth-k & shortest path: $o(k \log^2 n)$ -bit labels? True for trees k = 1[Fraigniaud,G.] and weighted outerplanar k = 2[Dieng, G.]: $\Theta(\log^2 n / \log \log n)$ bits are enough and necessary.
- **Q6:** Shortest path in planar with $\tilde{O}(1)$ labels: $\Omega(n^{1/3}) \ldots O(n)$ (currently 7.18*n* bits [Lu '02])

Future Works (1/2)

W1: $\tilde{O}(\deg(u))$ with stretch O(1) for general graphs?

Future Works (1/2)

- **W1:** $\tilde{O}(\deg(u))$ with stretch O(1) for general graphs?
- W2: Bounded degree?

(sparse graphs are known to be non-compact. Bounded degree nodes "increase" distances, so stretch tends to 1. No lower bounds is known. Bounded degree includes expanders ...)

Future Works (1/2)

- **W1:** $\tilde{O}(\deg(u))$ with stretch O(1) for general graphs?
- W2: Bounded degree?

(sparse graphs are known to be non-compact. Bounded degree nodes "increase" distances, so stretch tends to 1. No lower bounds is known. Bounded degree includes expanders ...)

 W3: Routing with additive stretch? (initial works in random power law networks [Brady,Cowen '06]. The additive stretch and the polylog labels depend on the graph parameter only. Works well in practice. Connection with distance labeling)

Future Works (2/2)

W4: Average stretch? ε-slack routing? (labeled and name-indep differ. Average stretch & additive stretch are interesting in practice)

Future Works (2/2)

- W4: Average stretch? ε-slack routing?(labeled and name-indep differ. Average stretch & additive stretch are interesting in practice)
- W5: Dynamic routing: Yes [Korman,Peleg] but not yet compact ...

Future Works (2/2)

- W4: Average stretch? ε-slack routing?(labeled and name-indep differ. Average stretch & additive stretch are interesting in practice)
- W5: Dynamic routing: Yes [Korman,Peleg] but not yet compact ...
- W6: Distributed algorithms for constructing tables? Yes [Frederickson'90] for some speficic graphs (planar). Distributed implementation is possible but ... complicated!

Thank you!