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The problem

n points (devices) are distributed uniformly at random 1in the
unit square.

Each point v can set its own transmission radius in order to
reach the £, closest devices

O(1) rounds to find the next closest device

There 1s a communication channel between two devices iff
they are within the transmission radius of each other.

ack’s 1n wireless standards.
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The problem

If k, = 2 for each v:
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The problem

Design a distributed algorithm to choose the k,’s which
1s fast (in terms of communication rounds),
sets up a connected network, and

minimizes the average/maximum out-degree.

ensures low traffic/congestion and low power
consumption.

e The three goals are partially conflicting.
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Known results
[Xue & Kumar’04]

o Set k, = K logn.

:-) The network 1s connected whp.
=) Very fast: O(logn).
avgdeg = maxdeg = O(logn).

best possible for uniform k,,’s.
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Known results
[Kucera’(5]

o Set k, = K.

o If |component(v)| < n/2 increase k, by one and repeat the
process.

¢ Otherwise, respond to the “requests™ of the nodes enlarging
their out-degree.

:-) The network 1s connected whp.
-) avgdeg = O(1), maxdeg = O(logn).
& best possible for arbitrary £,’s.

o O(opt) power consumption.

Very slow: €2(n) (7).
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Our results

By setting k, = K for each v, for a sufficiently large
universal constant /K, whp

there is a giant component of O(n) nodes,
all the other components contain at most C'log” n nodes, and

small components cannot merge into a component larger than
C'log® n without reaching the giant component before.

— Idea: replace the (slow) test in Kucera’s algorithm with a
faster probabilistic test.
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Our results
o Setk, = K.

o If |component(v)| < C'log” n increase k, by one and repeat
the process.

¢ Otherwise, respond to the “requests” of the nodes enlarging
their out-degree.
:-) The network 1s connected whp.
-) avgdeg = O(1), maxdeg = O(logn).
-) Fast: O(log® n).

o By reaching the giant component directly: time=O(log”n),
maxdeg=0 (log® n).
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Our results

authors X&K K D,G&P
time | O(logn) | Q(n) | O(log’n)

avgdeg | O(logn) | O(1) O(1)

maxdeg | O(logn) | O(logn) | O(logn)
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Outline

In the rest of this talk we’ll focus on our main theorem,
which guarantees connectivity whp.

The proof of the theorem 1s based on standard results from
percolation theory.

Short introduction to percolation.

Reduction to percolation.

The proof of the claims on time and degree follows along the
same line (but 1t 1s more technical).
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Percolation
Consider an infinite grid of cells, where each cell 1s
(independently) on with probability p,,,, and off otherwise
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Percolation

1s a connected component of on cells, where each cell

A

1s adjacent to the cells to its top, bottom, right, and left.
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Percolation

A lake 1s a *-connected component of off cells, together with its

interior part.
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Percolation

[Grimmet’89] For p,,, > p* < 1, almost surely there 1s a

unique oo cluster, and Pr|lake| > k] < e V*.

- °r 1 1 1 |
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Box-percolation

For our purposes, infinite grids are useless.
consider a square box of m cells.
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Box-percolation

[Deuschel,Pisztora’96] For p,,, > p*, whp the box contains

a unique giant cluster of ©(m) cells, and all the lakes have size
O(log®m).

H
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Reduction

— Idea: “map” giant cluster into giant component and “trap”
small components into lakes.
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Reduction

Our mapping requires a few intermediate steps:

Scenario A: Poisson process.
Scenario B: independent box-percolation, bad mapping.
Scenario C: h-dependent box-percolation, good mapping.

Scenario D: independent box-percolation, good mapping.
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Scenario A

e Consider a Poisson process of mean n.

¢ The number of points in a given region A is a Poisson
variable of mean |A|n.

¢ The number of points 1n disjoint regions are independent.
e What happens with probability at most p in Scenario A,

happens with probability at most v/n - p in the original
problem [Kucera’05].

¢ It can be improved to p + e~ 7",
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Scenario 55
e Partition the unit square into a grid of m = n/« cells, where
« 1s a (large) constant.
¢ « plays a crucial role in the analysis, though it does not
appear 1n the algorithm.
e A cell is on (good) if it contains between a//2 and 3¢/2
points.

o pb — 1for a — oo.
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Scenario B

For n = 200 and o« = 2 (m = 100):
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Scenario B

:-) we have independent box-percolation.
& here we use the properties of Poisson processes.

& for a sufficiently large constant «, there 1s a giant cluster of
good cells, and lakes are small.

The points of the giant cluster do not form a giant component
for any constant /.
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Scenario C

e Consider the same partition into cells as in Scenario B.

e A cellis on ( ) in scenario C if in Scenario B the same

cell 1s good together with all the cells at *-distance at most
D = O(1).

o pt — 1forps — 1(a — o0).
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Scenario C

For D = 1:
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Scenario C

e for D > 3 and K > 7%(3a/2), points in adjacent on cells
form a clique (cells with too many points are far away).

e for 2(D — 3)(«/2) > K, points inside distinct lakes cannot
reach each other without reaching the giant component
before (the giant component is thick).
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Scenario C
:-) Good mapping

< A giant cluster of cells translates into a giant component of
points.

< Small components contained in distinct lakes cannot merge
without reaching the giant component first.

We have no independent box-percolation.

-~
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Scenario D

e [Ligget,Schonmann,Stacey’97] There 1s a coupling between
two probability distributions of on cells C’ and D’ such that:
o if a cell is on in D/, then it is on also in C’;
¢ the marginal distribution of C’ is the distribution of C;

¢ the marginal distribution of D’ is an independent
box-percolation of parameter p” ;

o pP — 1 forp¢ — 1.

e The marginal distribution of D’ is our Scenario D.

¢ C stochastically dominates D.

:-) the same good mapping as in Scenario C.
:-) we can use all the standard results from independent
box-percolation.
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Unfolding

For a sufficiently large constant o, whp
There 1s a giant cluster in D.
Same in C.

There is a giant component in A.

All the lakes of D have size O(log” n).
Same in C.

Since small components of A are trapped inside lakes of C,
by standard large deviation all such components have size

O(logn) * O(log®n) = O(log® n)

... O(log®n) with a slightly more complicated analysis.
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Slightly more complicated analysis

Let Z; be the number of points in cell %, and let L be a lake in scenario C with n points. Then, for large enough number of points 7, there is a
constant «v > O such that

Pr( Z Z; > h) < e_’y\/ﬁ.

i€L
0.
Let B := (Bq, ..., By ) bethe random vector denoting which cells are good or bad, and b = (bq, . . . , by, ) any particular such
configuration. Then
Pr(Y Z;>h) = > Pr| > Z;,>h||L|=k|Pr(|L|=k)

1€ L k 1€ L

= SYSpPr| Y Z;>h||Ll=k,B=0b|Pr(B=0b]||L| =k)Pr(|L| = k)
- ieL
= Y Y Pr(Y Z;>h|B=0b)Pr(B=>0b]||L| =k)Pr(|L| = k).

k b icL

The last equality follows, since if we know B we also know the size of L. We now focusonthe term Pr(3°;c1, Z; > h | B = b). We will show
that we can replace the variables (Z; | B = b) with a set of i.i.d. variables that stochastically dominate them and that obey the large deviation principle.
The Poisson process can be realized as the product of 1 independent Poisson processes, each operating inside a cell. This implies that if we have a set of
events E£; where each event depends only on what happens in cell ¢, then Pr(M; E;) = [[; Pr(E;). Thus, we have

Pr(Nn;{Z; = h;, B; = b; [, Pr(Z; = h;, B; = b;)
Pr(n;{Z; = h;}|B =b) = ik B = bib) s PriZ vt v

Pr(ﬂi{Bi:bi}) Hipr(Bi:bi) 1;[ (Z; ilBj i)
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Slightly more complicated analysis

If we define X;, = (Z;|B; = good) andY; = (Z;|B,; = bad), it follows that ) ; (Z; | B) has the same law of the sum of independent
variables each of which is X '; or Y; depending on whether cell % is good or bad. Let us define a collection of i.i.d. random variables W ;’s each of which
has the distribution of (Z; | Z; > 2a). Each W stochastically dominates both X ; and Y’; so that

Pr(Y Z;>h|B=5b)<Pr(> W;>h),
te€L 1€l

for each configuration b. Moreover the W ; obey the large deviation principle, i.e. the probability of large deviations from the mean is exponentially small.
We thus have, for 3 < 1/ E[W1],

Pr(Y Z;>h) = Y > Pr(Y Z;>h|B=0bPr(B=5b||L| =k)Pr(|L| = k)
= k b i€eL

< DY DY Pr(> W; >h)Pr(B=0b||L|=k)Pr(|L| = k)
E b i<k

= Y Pr(> W; > h)Pr(|L| = k)
k i<k

= > Pr(Y W;>h)Pr(|L| =k)+ Y Pr(d) W; > h)Pr(|L| = k)
E<Bh i<k k>Bh i<k

< >, Pr( Y, W; >h)Pr(|L| =k)+ Y Pr(> 6 W; > h)Pr(|L| = k)
kE<Bh i<Bh k>pBh 1<k

< > Pr( Y, W; >h)+ Y.  Pr(|L| =k)
E<Bh  i<Bh k>pBh

= BhPr( Y W;>h)+ Y Pr(|L|=k)

i<Bh k>pBh

Bhe_’}qh + Z 6_72\/E < 6_7\/%.
k>pBh

IN
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Experiments

On the left, probability of achieving connectivity directly in the first phase, for
n = 1000 and for different values of K. On the right, 99-th percentile of the

maximum size of the second largest component in the same scenario.
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Open problems

e Can we decrease the running time from O(log® n) to
O(logn)?
o Small components contain O(log” n) nodes. Which is
their diameter?

& Which 1s the shape of lakes?
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