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Clustering Problems
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Figure 1. K-Center Clustering



Clustering Problems
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Figure 2: K-Median Clustering



The K -Center problem

Select locations for K fire stations so that no house is too far

from its nearest fire station.
Formally: Given a graph G = (V, E') and
integer K, find a subset .S (|.S| < K) of centers that

minimizes the following:

Radius R = max mind(u, v).
ueV veS

e NP-Hard — (2 — e)-approximation also NP-Hard (reduction

from Dominating Set).
e 2-approximable (Gonzalez, Hochbaum-Shmoys).

e Can also be extended to weighted K-centers.

Radius R = maxminw(u) - d(u, v).
ueV wves



Observations

Radius K£* of OPT must be the distance between a pair of
nodes in the graph (when S C V).

—> “Guess” each possible value for R*.
(At most (O(n?).)

Definition 1 (G is the unweighted graph with all the nodes of
G and edges (z, y) such that d(x,y) < 0.



Goal

Assume solution of radius 0 exists.
Goal: find a solution with radius at most ¢ - 0 using at most K

centers.



Algorithm

Try increasing values of 0.

Find a MIS S in G3.
If |S| < K then S is the solution.




Intuition

If we select v as a center, and v is covered in OPT by node v*
within radius 0, then v covers all nodes covered by v* within

distance 20.

Pick an uncovered node v as a center. Mark all nodes within 2

hops in G5 of v as covered. Repeat.

= <20 —>



Proof

Distance of each node from a node in .S is at most 20.

At the correct radius, the algorithm must succeed, since G(%

cannot have any MIS > |S]|.

If R; is the smallest radius for which the algorithm succeeds,
then R; < 0*. Our cost is at most 2R;.
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Figure 3. Hochbaum-Shmoys Method



Generalizations
1. (Capacities) Each center has an upper bound of L points
that can be assigned to it. Parameters: K, L.

2. (Outliers) Cluster at least p points (< n) into one of K

clusters. Parameters: K, p.

3. (Anonymity) Each cluster should have at least r points in it.

Parameters: K, r. Problem is hard even if K is
unrestricted!

r-Gather problem: Unbounded K.
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Capacties on Cluster Sizes

(Bar-llan, Kortsarz, Peleg) Develop a factor 10 approximation for

the capacitated K -center problem.

(Khuller, Sussmann) Improve to factor 5 approximation.

Figure 4: Tree of Centers

Uses BFS to build a “tree” of centers, and then uses network
flow for coming up with a good lower bound on the optimal

solution. Easy to get a bound of 7. More work to improve that.



OQutliers

0 R

2-center solution (k=2) 2-center robust solution (k=2, p=11)

Figure 5. We are only required to cluster p points.
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Outliers

(Charikar, Khuller, Mount, Narasimhan) There is a factor 3

approximation for the K -center problem with outliers.

We also prove a 3 — € hardness for any € > 0 for the problem

when some locations are forbidden.

Extended to case p = n (Cost K -Centers) recently (Chuzhoy,

Halperin, Khanna, Kortsarz, Krauhtgamer, Naor).

OPEN: Can we get a 3 — € hardness for any € > 0 for the

K -center problem with outliers?
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Observations

Suppose we know the optimal solution radius (R) (try them all!).

For each pointv; € V, let G; (E;, resp.) denote the set of
points that are within distance R (3R, resp.) from v;. (5; are
disks of radius R and the sets F/; are the corresponding
expanded disks of radius 3. Size of a disk (or expanded disk)
IS its cardinality.

Disk has 6 points
Expanded disk has

18 points

Figure 6: Disks and Expanded Disks.



New Algorithm (Robust K-centers/K-suppliers)

1. Initially all points are uncovered.
2. Construct all disks and corresponding expanded disks.
3. Repeat the following K times:
® Let Gj be the heaviest disk, i.e. contains the most
uncovered points.
e Mark as covered all points in the corresponding
expanded disk £/; after placing facility at j.
e Update all the disks and expanded disks (i.e., remove

covered points).

4. If at least p points of V' are marked as covered, then answer

YES, else answer NO.
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Bad Example

The algorithm fails if we greedily pick the heaviest expanded

disk instead!

Figure 7: Bad example for choosing based on Ej.
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Proof Idea

Let the sets of points covered by the OPTIMAL solution be
Oy, ..., Ox.

The key observation is that if we ever pick a set Gj that covers

a point in some O;, then L/ covers all points in O;.

s

Figure 8: Optimal Clusters and the Greedy Step
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Proof Idea

Theorem 1 With radius R if there exists a placement of K
centers that covers p customers, then the algorithm finds a
placement of K centers that with a radius of 3.2 cover at least p

customers.

k
[Ey| > |01+ ) |E1NO;. (1)
i=2
Consider the (k — 1)-center problem on the set S — E;. We
choose Fs, Es, ..., E. For S — Ej, itis clear that
Oy — E1,03 — E1,...,0, — Ej is asolution, although not

an optimal one. By induction, we know that

k
|ExU...UE| > | J(O; — Ey) (2)

1=2

Adding gives the result.
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Lower bound on Cluster Size (Anonymity)

How do we publish data about individuals?

One solution: Remove identifying information (names) and then

publish the information.

Problem: using public databases (voter records) people are able
to infer information about individuals (or narrow the options

down to a very small number).

Another approach (Agarwal, Feder, Kentapadhi, Khuller,
Panigrahy, Thomas, Zhu) is to fudge the data slightly to provide

anonymity.
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Lower bound on Cluster Size (Anonymity)

Another approach: cluster data into dense clusters of small

radius. Publish information about the cluster centers.

Problem is N P-complete even when the number of clusters is
not specified!
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Figure 9: Publishing anonymized data



(K, r)-Center Problem

Cluster data into /& clusters and minimize the largest radius.

Moreover, each cluster should have size at least r.

Condition (1) Each point in the database should have at least  — 1 other

points within distance 2.

Condition (2) Let all nodes be unmarked initially.
Select an arbitrary unmarked point as a center. Select all
unmarked points within distance 2R to form a cluster and
mark these points.

Repeat this as long as possible, until all points are marked.
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Re-assignment Step

Reassign points to clusters to get at least 7 in each cluster.

Let C' be the set of centers that were chosen. Add edges
(capacity ) from s to each node in C'. Add an edge of unit
capacity from anode ¢ € C'toanode v € V d(v,c) < 2R.

Check to see if a flow of value |C'| can be found.



Re-assignment

Suppose 7 units of flow enter a node v € C'. The nodes of V
through which the flow goes to the sink are assigned to v.
Nodes of V' through which no flow goes to the sink can be

assigned anywhere.
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(K, r, p)-Centers

Find K small clusters of size at least r so that at least p points

are clustered.
Algorithm:

(Filtering Step) Let S be points v such that | N (v, 2R)| > 7.
Check if | S| > p, otherwise exit. We only consider points in S.

(Greedy Step) Choose up to K centers. Initially () is empty. All
points are uncovered initially. Let N (v, d) be the set of
uncovered points within distance 0 of v. Once a point is covered

It IS removed.
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Algorithm

At each step 1, pick a center ¢; that satisfies the following
criteria:

(a) ¢; is uncovered.

(b) | N (¢i, 2R)| is maximum.

All uncovered points in N (¢;, 4R) are then marked as covered.

After () is chosen, check to see if at least p points are covered,

otherwise exit with failure.

(Assignment step): Form clusters as follows. For each ¢; € (),
form a cluster C; centered at ¢;. Each covered point is assigned

to its closest cluster center.

Denote G; = N(¢;,2R) and E; = N(c¢;,4R), which are
uncovered points within distance 2R and 4R of ¢;, when ¢; is

chosen.
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(K, r, p)-Centers
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Figure 10: Optimal Clusters and the Greedy Step
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Observations
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Figure 11: Optimal Clusters and the Greedy Step
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Observations
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Figure 12: Optimal Clusters and the Greedy Step
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Proof

Key Points:

e Cluster centers are far apart (> 4 R), so we get all the

points within radius 2R (at least 7).

e Once a cluster is covered by (5, it is completely covered by

E; (get all the points).

e [J; may grab a few points from any cluster making it sparse.
However, these points will eventually be re-assigned to the

center in this cluster if all the points are not covered by
Ejvj > 1.

e Proof that we get at least p points is similar to the proof

done earlier.
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Lower Bound on Cluster Sizes

For facility location Karger, Minkoff and Guha, Meyerson,

Munagala give a (5, 3pOPT,.) bound.

p Is the approximation guarantee for facility location.

Currently p =~ 1.5.
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r-Cellular Clustering

Find clusters such that each cluster has at least r points. The
cost for cluster C; is R; - n; (upper bound on distortion of data)

and a facility cost of f;.

Min ) cost(C;) + f;

Use primal-dual methods to get a 0(1) approximation for this

problem.
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Conclusions

1. Concept of outliers can also be used for standard facility

location (Charikar, Khuller, Mount, Narasimhan).

2. K-centers can be solved with a single pass over the data.

(Data stream clustering (Charikar,Chekuri,Feder,Motwani)).

Approximation factor (randomized): 8(26).

3. Extensions for the two metric case (Bhatia, Guha, Khuller,
Sussmann). Fix K centers so that everyone is close to a
center in each of two metrics.

Approximation factor: 3. Uses matchings.
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Thats all folks!

T T
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