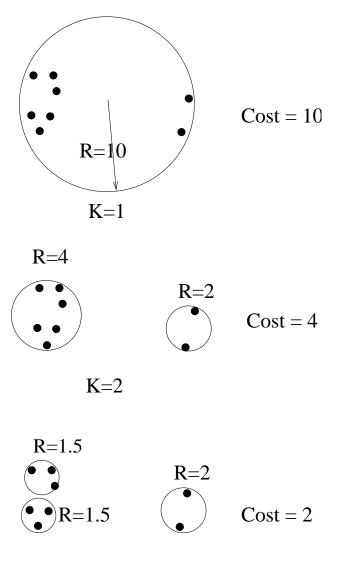
# K-Center Clusterings and Generalizations

# **Samir Khuller**

University of Maryland College Park, Maryland



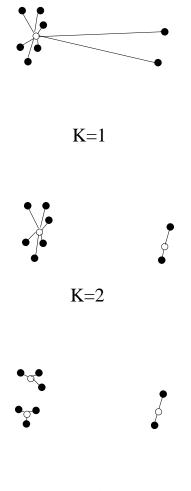
## **Clustering Problems**



K=3

Figure 1: K-Center Clustering

#### **Clustering Problems**



K=3

Figure 2: K-Median Clustering

## The K-Center problem

Select locations for K fire stations so that no house is too far from its nearest fire station.

Formally: Given a graph G = (V, E) and integer K, find a subset  $S(|S| \le K)$  of centers that minimizes the following:

Radius 
$$R = \max_{u \in V} \min_{v \in S} d(u, v).$$

- NP-Hard  $(2 \epsilon)$ -approximation also NP-Hard (reduction from Dominating Set).
- 2-approximable (Gonzalez, Hochbaum-Shmoys).
- Can also be extended to weighted K-centers.

Radius 
$$R = \max_{u \in V} \min_{v \in S} w(u) \cdot d(u, v).$$

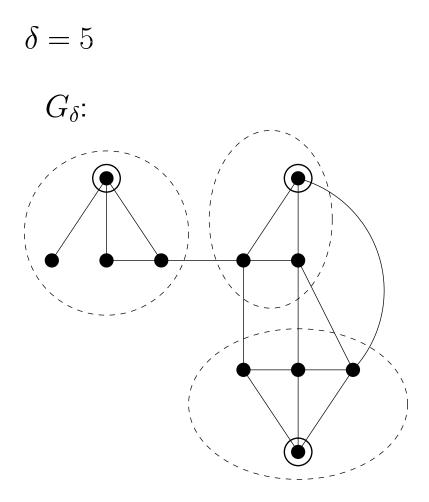
#### **Observations**

Radius  $R^*$  of OPT must be the distance between a pair of nodes in the graph (when  $S \subset V$ ).

 $\implies$  "Guess" each possible value for  $R^*$ . (At most ( $O(n^2)$ .)

**Definition 1**  $G_{\delta}$  is the unweighted graph with all the nodes of G and edges (x, y) such that  $d(x, y) \leq \delta$ .

#### Goal



K=3

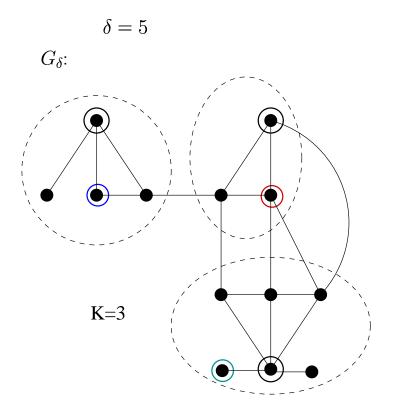
Assume solution of radius  $\delta$  exists.

Goal: find a solution with radius at most  $c \cdot \delta$  using at most K centers.

## Algorithm

Try increasing values of  $\delta$ .

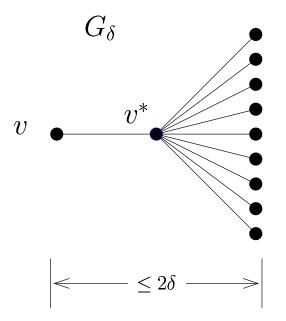
Find a MIS S in  $G_{\delta}^2$ . If  $|S| \leq K$  then S is the solution.



### Intuition

If we select v as a center, and v is covered in OPT by node  $v^*$  within radius  $\delta$ , then v covers all nodes covered by  $v^*$  within distance  $2\delta$ .

Pick an uncovered node v as a center. Mark all nodes within 2 hops in  $G_{\delta}$  of v as covered. Repeat.



#### Proof

Distance of each node from a node in S is at most  $2\delta$ .

At the correct radius, the algorithm must succeed, since  $G_{\delta}^2$  cannot have any MIS > |S|.

If  $R_i$  is the smallest radius for which the algorithm succeeds, then  $R_i \leq \delta^*$ . Our cost is at most  $2R_i$ .

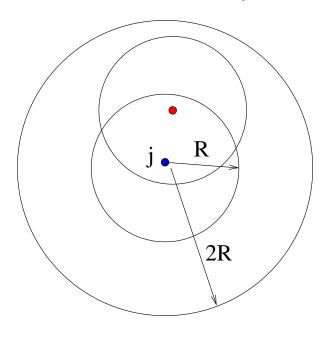


Figure 3: Hochbaum-Shmoys Method

#### Generalizations

- 1. (Capacities) Each center has an upper bound of L points that can be assigned to it. Parameters: K, L.
- 2. (Outliers) Cluster at least p points ( $\leq n$ ) into one of K clusters. Parameters: K, p.
- 3. (Anonymity) Each cluster should have at least r points in it. Parameters: K, r. Problem is hard even if K is unrestricted!
  - r-Gather problem: Unbounded K.

#### **Capacties on Cluster Sizes**

(Bar-Ilan, Kortsarz, Peleg) Develop a factor 10 approximation for the capacitated K-center problem.

(Khuller, Sussmann) Improve to factor 5 approximation.

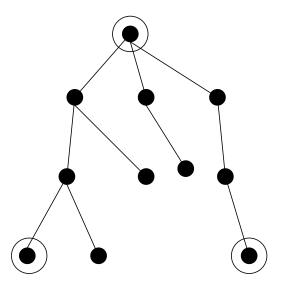


Figure 4: Tree of Centers

Uses BFS to build a "tree" of centers, and then uses network flow for coming up with a good lower bound on the optimal solution. Easy to get a bound of 7. More work to improve that.

## **Outliers**

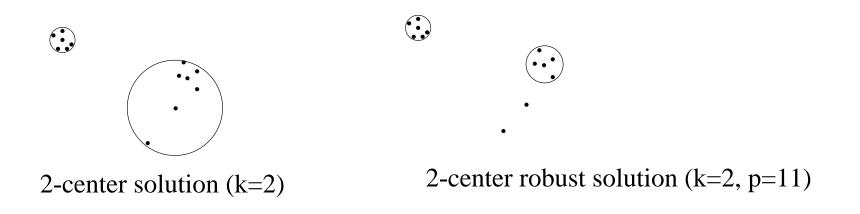


Figure 5: We are only required to cluster p points.

## Outliers

(Charikar, Khuller, Mount, Narasimhan) There is a factor 3 approximation for the K-center problem with outliers.

We also prove a  $3 - \epsilon$  hardness for any  $\epsilon > 0$  for the problem when some locations are forbidden.

Extended to case p = n (Cost *K*-Centers) recently (Chuzhoy, Halperin, Khanna, Kortsarz, Krauhtgamer, Naor).

OPEN: Can we get a  $3 - \epsilon$  hardness for any  $\epsilon > 0$  for the *K*-center problem with outliers?

#### **Observations**

Suppose we know the optimal solution radius (R) (try them all!). For each point  $v_i \in V$ , let  $G_i$  ( $E_i$ , resp.) denote the set of points that are within distance R (3R, resp.) from  $v_i$ .  $G_i$  are *disks* of radius R and the sets  $E_i$  are the corresponding *expanded disks* of radius 3R. *Size* of a disk (or expanded disk) is its cardinality.

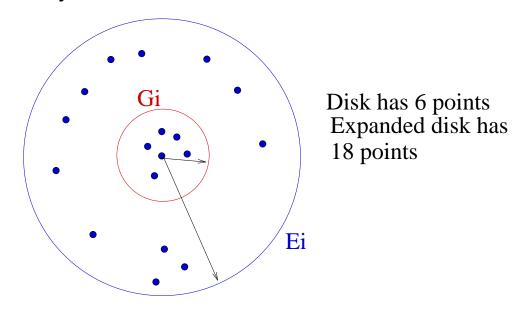


Figure 6: Disks and Expanded Disks.

## New Algorithm (Robust K-centers/K-suppliers)

- 1. Initially all points are uncovered.
- 2. Construct all disks and corresponding expanded disks.
- 3. Repeat the following K times:
  - Let  $G_j$  be the heaviest disk, i.e. contains the most uncovered points.
  - Mark as covered all points in the corresponding expanded disk  $E_j$  after placing facility at j.
  - Update all the disks and expanded disks (i.e., remove covered points).
- 4. If at least p points of V are marked as covered, then answer YES, else answer NO.

## **Bad Example**

The algorithm fails if we greedily pick the heaviest expanded disk instead!

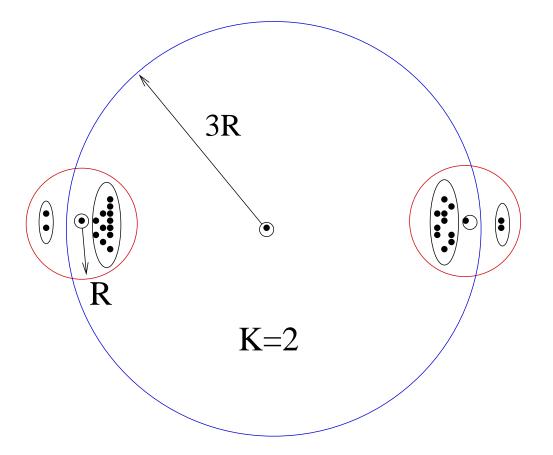


Figure 7: Bad example for choosing based on  $E_j$ .

## **Proof Idea**

Let the sets of points covered by the OPTIMAL solution be  $O_1, \ldots, O_K$ .

The key observation is that if we ever pick a set  $G_j$  that covers a point in some  $O_i$ , then  $E_j$  covers all points in  $O_i$ .

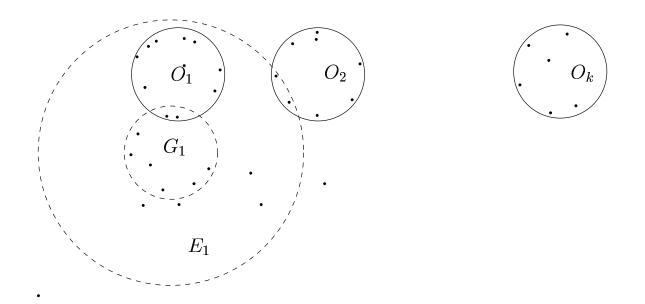


Figure 8: Optimal Clusters and the Greedy Step

#### **Proof Idea**

**Theorem 1** With radius R if there exists a placement of K centers that covers p customers, then the algorithm finds a placement of K centers that with a radius of 3R cover at least p customers.

$$|E_1| \ge |O_1| + \sum_{i=2}^k |E_1 \cap O_i|. \tag{1}$$

Consider the (k-1)-center problem on the set  $S - E_1$ . We choose  $E_2, E_3, \ldots, E_k$ . For  $S - E_1$ , it is clear that  $O_2 - E_1, O_3 - E_1, \ldots, O_k - E_1$  is a solution, although not an optimal one. By induction, we know that

$$E_2 \cup \ldots \cup E_k | \ge |\bigcup_{i=2}^k (O_i - E_1)|$$
 (2)

Adding gives the result.

## Lower bound on Cluster Size (Anonymity)

How do we publish data about individuals?

One solution: Remove identifying information (names) and then publish the information.

Problem: using public databases (voter records) people are able to infer information about individuals (or narrow the options down to a very small number).

Another approach (Agarwal, Feder, Kentapadhi, Khuller, Panigrahy, Thomas, Zhu) is to fudge the data slightly to provide anonymity.

## Lower bound on Cluster Size (Anonymity)

Another approach: cluster data into dense clusters of small radius. Publish information about the cluster centers.

Problem is NP-complete even when the number of clusters is not specified!

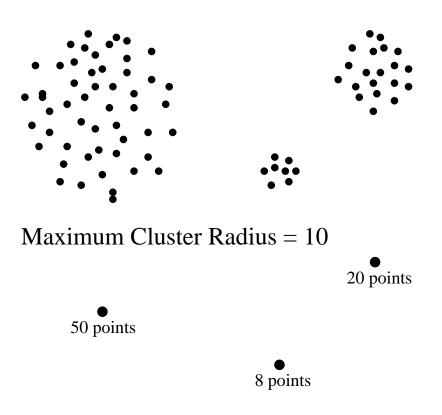


Figure 9: Publishing anonymized data

## (K, r)-Center Problem

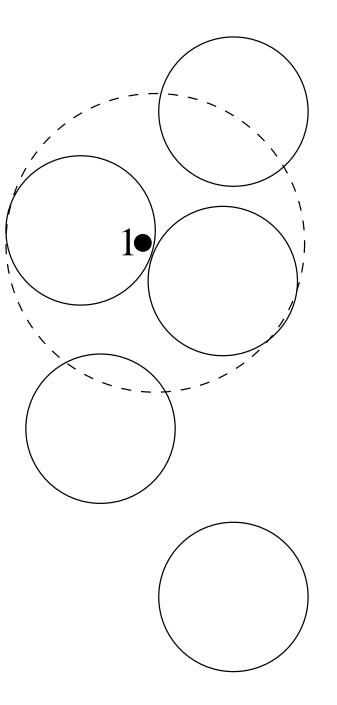
Cluster data into K clusters and minimize the largest radius. Moreover, each cluster should have size at least r.

Condition (1) Each point in the database should have at least r - 1 other points within distance 2R.

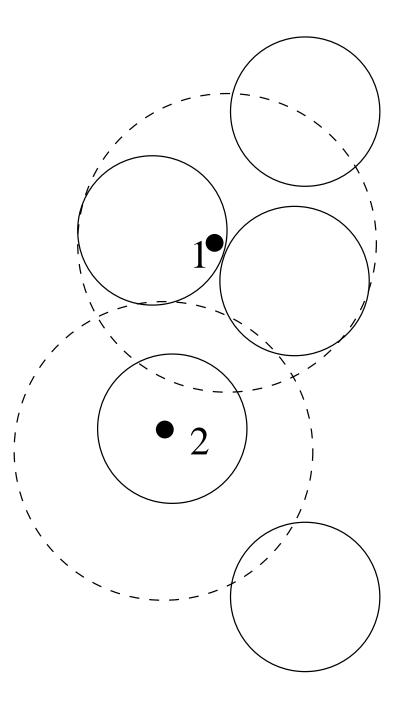
Condition (2) Let all nodes be unmarked initially. Select an arbitrary unmarked point as a center. Select all unmarked points within distance 2R to form a cluster and mark these points.

Repeat this as long as possible, until all points are marked.

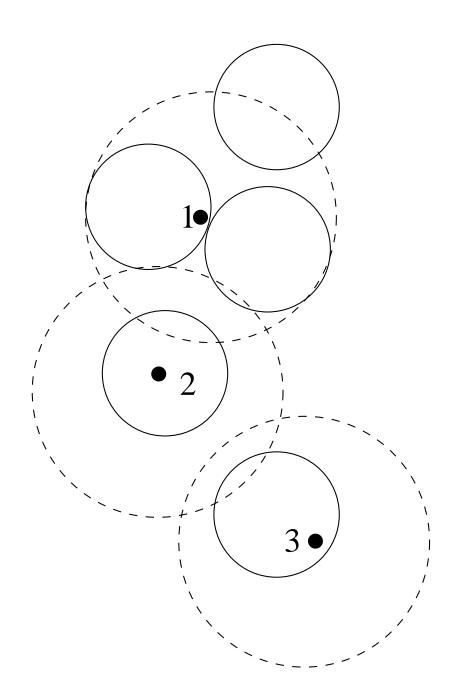
## Example



## Example

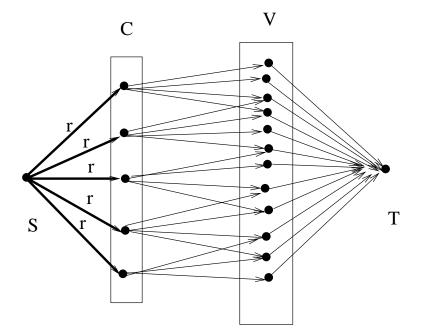


## Example



#### **Re-assignment Step**

Reassign points to clusters to get at least r in each cluster.



Let C be the set of centers that were chosen. Add edges (capacity r) from s to each node in C. Add an edge of unit capacity from a node  $c \in C$  to a node  $v \in V d(v, c) \leq 2R$ . Check to see if a flow of value r|C| can be found.

### **Re-assignment**

Suppose r units of flow enter a node  $v \in C$ . The nodes of V through which the flow goes to the sink are assigned to v. Nodes of V through which no flow goes to the sink can be assigned anywhere.

## (K, r, p)-Centers

Find K small clusters of size at least r so that at least p points are clustered.

#### Algorithm:

(Filtering Step) Let S be points v such that  $|N(v, 2R)| \ge r$ . Check if  $|S| \ge p$ , otherwise exit. We only consider points in S. (Greedy Step) Choose up to K centers. Initially Q is empty. All points are uncovered initially. Let  $N(v, \delta)$  be the set of *uncovered points* within distance  $\delta$  of v. Once a point is covered

it is removed.

## Algorithm

At each step i, pick a center  $c_i$  that satisfies the following criteria:

(a)  $c_i$  is uncovered.

(b)  $|N(c_i, 2R)|$  is maximum.

All uncovered points in  $N(c_i, 4R)$  are then marked as covered.

After Q is chosen, check to see if at least p points are covered, otherwise exit with failure.

(Assignment step): Form clusters as follows. For each  $c_i \in Q$ , form a cluster  $C_i$  centered at  $c_i$ . Each covered point is assigned to its closest cluster center.

Denote  $G_i = N(c_i, 2R)$  and  $E_i = N(c_i, 4R)$ , which are uncovered points within distance 2R and 4R of  $c_i$ , when  $c_i$  is chosen.

# (K, r, p)-Centers

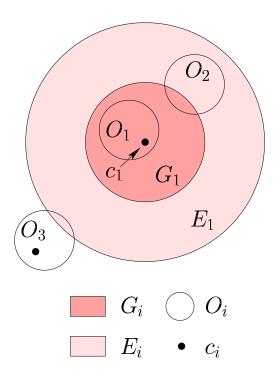


Figure 10: Optimal Clusters and the Greedy Step

#### **Observations**

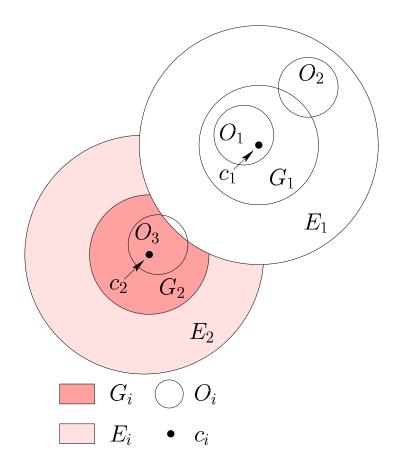
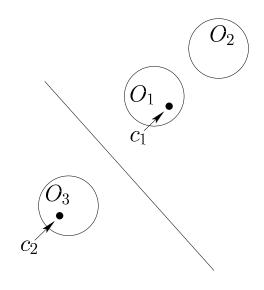


Figure 11: Optimal Clusters and the Greedy Step

#### **Observations**





#### Figure 12: Optimal Clusters and the Greedy Step

## Proof

Key Points:

- Cluster centers are far apart (> 4R), so we get all the points within radius 2R (at least r).
- Once a cluster is covered by  $G_i$ , it is completely covered by  $E_i$  (get all the points).
- $E_i$  may grab a few points from any cluster making it sparse. However, these points will eventually be re-assigned to the center in this cluster if all the points are not covered by  $E_j, j \ge i$ .
- Proof that we get at least p points is similar to the proof done earlier.

#### **Lower Bound on Cluster Sizes**

For facility location Karger, Minkoff and Guha, Meyerson, Munagala give a  $(\frac{r}{2}, 3\rho OPT_r)$  bound.

 $\rho$  is the approximation guarantee for facility location. Currently  $\rho\approx 1.5.$ 

#### *r*-Cellular Clustering

Find clusters such that each cluster has at least r points. The cost for cluster  $C_i$  is  $R_i \cdot n_i$  (upper bound on distortion of data) and a facility cost of  $f_i$ .

$$Min\sum_{i} cost(C_i) + f_i$$

Use primal-dual methods to get a O(1) approximation for this problem.

## Conclusions

- 1. Concept of outliers can also be used for standard facility location (Charikar, Khuller, Mount, Narasimhan).
- 2. K-centers can be solved with a single pass over the data. (Data stream clustering (Charikar,Chekuri,Feder,Motwani)). Approximation factor (randomized): 8(2e).
- 3. Extensions for the two metric case (Bhatia, Guha, Khuller, Sussmann). Fix K centers so that everyone is close to a center in each of two metrics.

Approximation factor: 3. Uses matchings.

#### Thats all folks!

