K-Center Clusterings and Generalizations

Samir Khuller

University of Maryland
College Park, Maryland

Clustering Problems

$$
\mathrm{K}=2
$$

$$
\begin{aligned}
& \mathrm{R}=1.5 \\
& ? \\
& R=1.5
\end{aligned}
$$

Cost $=2$

$$
K=3
$$

Figure 1: K-Center Clustering

Clustering Problems

$$
K=1
$$

$$
\mathrm{K}=2
$$

$$
\mathrm{K}=3
$$

Figure 2: K-Median Clustering

The K-Center problem

Select locations for K fire stations so that no house is too far from its nearest fire station.

Formally: Given a graph $G=(V, E)$ and integer K, find a subset $S(|S| \leq K)$ of centers that minimizes the following:

$$
\text { Radius } R=\max _{u \in V} \min _{v \in S} d(u, v)
$$

- NP-Hard - $(2-\epsilon)$-approximation also NP-Hard (reduction from Dominating Set).
- 2-approximable (Gonzalez, Hochbaum-Shmoys).
- Can also be extended to weighted K-centers.

$$
\text { Radius } R=\max _{u \in V} \min _{v \in S} w(u) \cdot d(u, v)
$$

Observations

Radius R^{*} of OPT must be the distance between a pair of nodes in the graph (when $S \subset V$).
\Longrightarrow "Guess" each possible value for R^{*}.
(At most ($O\left(n^{2}\right.$).)
Definition $1 G_{\delta}$ is the unweighted graph with all the nodes of G and edges (x, y) such that $d(x, y) \leq \delta$.

Goal

$$
\delta=5
$$

$$
G_{\delta}:
$$

$$
K=3
$$

Assume solution of radius δ exists.
Goal: find a solution with radius at most $c \cdot \delta$ using at most K centers.

Algorithm

Try increasing values of δ.

Find a MIS S in G_{δ}^{2}.
If $|S| \leq K$ then S is the solution.

Intuition

If we select v as a center, and v is covered in OPT by node v^{*} within radius δ, then v covers all nodes covered by v^{*} within distance 2δ.

Pick an uncovered node v as a center. Mark all nodes within 2 hops in G_{δ} of v as covered. Repeat.

Proof

Distance of each node from a node in S is at most 2δ.
At the correct radius, the algorithm must succeed, since G_{δ}^{2} cannot have any MIS $>|S|$.

If R_{i} is the smallest radius for which the algorithm succeeds, then $R_{i} \leq \delta^{*}$. Our cost is at most $2 R_{i}$.

Figure 3: Hochbaum-Shmoys Method

Generalizations

1. (Capacities) Each center has an upper bound of L points that can be assigned to it. Parameters: K, L.
2. (Outliers) Cluster at least p points $(\leq n)$ into one of K clusters. Parameters: K, p.
3. (Anonymity) Each cluster should have at least r points in it. Parameters: K, r. Problem is hard even if K is unrestricted!
r-Gather problem: Unbounded K.

Capacties on Cluster Sizes

(Bar-llan, Kortsarz, Peleg) Develop a factor 10 approximation for the capacitated K-center problem.
(Khuller, Sussmann) Improve to factor 5 approximation.

Figure 4: Tree of Centers

Uses BFS to build a "tree" of centers, and then uses network flow for coming up with a good lower bound on the optimal solution. Easy to get a bound of 7 . More work to improve that.

Outliers

Figure 5: We are only required to cluster p points.

Outliers

(Charikar, Khuller, Mount, Narasimhan) There is a factor 3 approximation for the K-center problem with outliers.

We also prove a $3-\epsilon$ hardness for any $\epsilon>0$ for the problem when some locations are forbidden.

Extended to case $p=n$ (Cost K-Centers) recently (Chuzhoy, Halperin, Khanna, Kortsarz, Krauhtgamer, Naor).

OPEN: Can we get a $3-\epsilon$ hardness for any $\epsilon>0$ for the K-center problem with outliers?

Observations

Suppose we know the optimal solution radius (R) (try them all!).
For each point $v_{i} \in V$, let G_{i} (E_{i}, resp.) denote the set of points that are within distance $R\left(3 R\right.$, resp.) from v_{i}. G_{i} are disks of radius R and the sets E_{i} are the corresponding expanded disks of radius $3 R$. Size of a disk (or expanded disk) is its cardinality.

Figure 6: Disks and Expanded Disks.

New Algorithm (Robust K-centers/K-suppliers)

1. Initially all points are uncovered.
2. Construct all disks and corresponding expanded disks.
3. Repeat the following K times:

- Let G_{j} be the heaviest disk, i.e. contains the most uncovered points.
- Mark as covered all points in the corresponding expanded disk E_{j} after placing facility at j.
- Update all the disks and expanded disks (i.e., remove covered points).

4. If at least p points of V are marked as covered, then answer YES, else answer NO.

Bad Example

The algorithm fails if we greedily pick the heaviest expanded disk instead!

Figure 7: Bad example for choosing based on E_{j}.

Proof Idea

Let the sets of points covered by the OPTIMAL solution be O_{1}, \ldots, O_{K}.

The key observation is that if we ever pick a set G_{j} that covers a point in some O_{i}, then E_{j} covers all points in O_{i}.

Figure 8: Optimal Clusters and the Greedy Step

Proof Idea

Theorem 1 With radius R if there exists a placement of K centers that covers p customers, then the algorithm finds a placement of K centers that with a radius of $3 R$ cover at least p customers.

$$
\begin{equation*}
\left|E_{1}\right| \geq\left|O_{1}\right|+\sum_{i=2}^{k}\left|E_{1} \cap O_{i}\right| \tag{1}
\end{equation*}
$$

Consider the ($k-1$)-center problem on the set $S-E_{1}$. We choose $E_{2}, E_{3}, \ldots, E_{k}$. For $S-E_{1}$, it is clear that $O_{2}-E_{1}, O_{3}-E_{1}, \ldots, O_{k}-E_{1}$ is a solution, although not an optimal one. By induction, we know that

$$
\begin{equation*}
\left|E_{2} \cup \ldots \cup E_{k}\right| \geq\left|\bigcup_{i=2}^{k}\left(O_{i}-E_{1}\right)\right| \tag{2}
\end{equation*}
$$

Adding gives the result.

Lower bound on Cluster Size (Anonymity)

How do we publish data about individuals?
One solution: Remove identifying information (names) and then publish the information.

Problem: using public databases (voter records) people are able to infer information about individuals (or narrow the options down to a very small number).

Another approach (Agarwal, Feder, Kentapadhi, Khuller, Panigrahy, Thomas, Zhu) is to fudge the data slightly to provide anonymity.

Lower bound on Cluster Size (Anonymity)

Another approach: cluster data into dense clusters of small radius. Publish information about the cluster centers.

Problem is $N P$-complete even when the number of clusters is not specified!

8 points

Figure 9: Publishing anonymized data

(K, r)-Center Problem

Cluster data into K clusters and minimize the largest radius.
Moreover, each cluster should have size at least r.
Condition (1) Each point in the database should have at least $r-1$ other points within distance $2 R$.

Condition (2) Let all nodes be unmarked initially.
Select an arbitrary unmarked point as a center. Select all unmarked points within distance $2 R$ to form a cluster and mark these points.
Repeat this as long as possible, until all points are marked.

Example

Example

Example

Re-assignment Step

Reassign points to clusters to get at least r in each cluster.

Let C be the set of centers that were chosen. Add edges (capacity r) from s to each node in C. Add an edge of unit capacity from a node $c \in C$ to a node $v \in V d(v, c) \leq 2 R$. Check to see if a flow of value $r|C|$ can be found.

Re-assignment

Suppose r units of flow enter a node $v \in C$. The nodes of V through which the flow goes to the sink are assigned to v. Nodes of V through which no flow goes to the sink can be assigned anywhere.

(K, r, p)-Centers

Find K small clusters of size at least r so that at least p points are clustered.

Algorithm:

(Filtering Step) Let S be points v such that $|N(v, 2 R)| \geq r$. Check if $|S| \geq p$, otherwise exit. We only consider points in S.
(Greedy Step) Choose up to K centers. Initially Q is empty. All points are uncovered initially. Let $N(v, \delta)$ be the set of uncovered points within distance δ of v. Once a point is covered it is removed.

Algorithm

At each step i, pick a center c_{i} that satisfies the following criteria:
(a) c_{i} is uncovered.
(b) $\left|N\left(c_{i}, 2 R\right)\right|$ is maximum.

All uncovered points in $N\left(c_{i}, 4 R\right)$ are then marked as covered.
After Q is chosen, check to see if at least p points are covered, otherwise exit with failure.
(Assignment step): Form clusters as follows. For each $c_{i} \in Q$, form a cluster C_{i} centered at c_{i}. Each covered point is assigned to its closest cluster center.

Denote $G_{i}=N\left(c_{i}, 2 R\right)$ and $E_{i}=N\left(c_{i}, 4 R\right)$, which are uncovered points within distance $2 R$ and $4 R$ of c_{i}, when c_{i} is chosen.
(K, r, p)-Centers

Figure 10: Optimal Clusters and the Greedy Step

Observations

Figure 11: Optimal Clusters and the Greedy Step

Observations

Figure 12: Optimal Clusters and the Greedy Step

Proof

Key Points:

- Cluster centers are far apart ($>4 R$), so we get all the points within radius $2 R$ (at least r).
- Once a cluster is covered by G_{i}, it is completely covered by E_{i} (get all the points).
- E_{i} may grab a few points from any cluster making it sparse. However, these points will eventually be re-assigned to the center in this cluster if all the points are not covered by $E_{j}, j \geq i$.
- Proof that we get at least p points is similar to the proof done earlier.

Lower Bound on Cluster Sizes

For facility location Karger, Minkoff and Guha, Meyerson, Munagala give a $\left(\frac{r}{2}, 3 \rho O P T_{r}\right)$ bound.
ρ is the approximation guarantee for facility location.
Currently $\rho \approx 1.5$.

r-Cellular Clustering

Find clusters such that each cluster has at least r points. The cost for cluster C_{i} is $R_{i} \cdot n_{i}$ (upper bound on distortion of data) and a facility cost of f_{i}.

$$
\operatorname{Min} \sum_{i} \operatorname{cost}\left(C_{i}\right)+f_{i}
$$

Use primal-dual methods to get a $O(1)$ approximation for this problem.

Conclusions

1. Concept of outliers can also be used for standard facility location (Charikar, Khuller, Mount, Narasimhan).
2. K-centers can be solved with a single pass over the data. (Data stream clustering (Charikar,Chekuri,Feder,Motwani)). Approximation factor (randomized): $8(2 e)$.
3. Extensions for the two metric case (Bhatia, Guha, Khuller, Sussmann). Fix K centers so that everyone is close to a center in each of two metrics. Approximation factor: 3. Uses matchings.

Thats all folks!

