K-Center Clusterings and Generalizations

Samir Khuller

University of Maryland College Park, Maryland

Clustering Problems

K=3

Figure 1: K-Center Clustering

Clustering Problems

K=3

Figure 2: K-Median Clustering

The K-Center problem

Select locations for K fire stations so that no house is too far from its nearest fire station.

Formally: Given a graph G = (V, E) and integer K, find a subset $S(|S| \le K)$ of centers that minimizes the following:

Radius
$$R = \max_{u \in V} \min_{v \in S} d(u, v).$$

- NP-Hard (2ϵ) -approximation also NP-Hard (reduction from Dominating Set).
- 2-approximable (Gonzalez, Hochbaum-Shmoys).
- Can also be extended to weighted K-centers.

Radius
$$R = \max_{u \in V} \min_{v \in S} w(u) \cdot d(u, v).$$

Observations

Radius R^* of OPT must be the distance between a pair of nodes in the graph (when $S \subset V$).

 \implies "Guess" each possible value for R^* . (At most ($O(n^2)$.)

Definition 1 G_{δ} is the unweighted graph with all the nodes of G and edges (x, y) such that $d(x, y) \leq \delta$.

Goal

K=3

Assume solution of radius δ exists.

Goal: find a solution with radius at most $c \cdot \delta$ using at most K centers.

Algorithm

Try increasing values of δ .

Find a MIS S in G_{δ}^2 . If $|S| \leq K$ then S is the solution.

Intuition

If we select v as a center, and v is covered in OPT by node v^* within radius δ , then v covers all nodes covered by v^* within distance 2δ .

Pick an uncovered node v as a center. Mark all nodes within 2 hops in G_{δ} of v as covered. Repeat.

Proof

Distance of each node from a node in S is at most 2δ .

At the correct radius, the algorithm must succeed, since G_{δ}^2 cannot have any MIS > |S|.

If R_i is the smallest radius for which the algorithm succeeds, then $R_i \leq \delta^*$. Our cost is at most $2R_i$.

Figure 3: Hochbaum-Shmoys Method

Generalizations

- 1. (Capacities) Each center has an upper bound of L points that can be assigned to it. Parameters: K, L.
- 2. (Outliers) Cluster at least p points ($\leq n$) into one of K clusters. Parameters: K, p.
- 3. (Anonymity) Each cluster should have at least r points in it. Parameters: K, r. Problem is hard even if K is unrestricted!
 - r-Gather problem: Unbounded K.

Capacties on Cluster Sizes

(Bar-Ilan, Kortsarz, Peleg) Develop a factor 10 approximation for the capacitated K-center problem.

(Khuller, Sussmann) Improve to factor 5 approximation.

Figure 4: Tree of Centers

Uses BFS to build a "tree" of centers, and then uses network flow for coming up with a good lower bound on the optimal solution. Easy to get a bound of 7. More work to improve that.

Outliers

Figure 5: We are only required to cluster p points.

Outliers

(Charikar, Khuller, Mount, Narasimhan) There is a factor 3 approximation for the K-center problem with outliers.

We also prove a $3 - \epsilon$ hardness for any $\epsilon > 0$ for the problem when some locations are forbidden.

Extended to case p = n (Cost *K*-Centers) recently (Chuzhoy, Halperin, Khanna, Kortsarz, Krauhtgamer, Naor).

OPEN: Can we get a $3 - \epsilon$ hardness for any $\epsilon > 0$ for the *K*-center problem with outliers?

Observations

Suppose we know the optimal solution radius (R) (try them all!). For each point $v_i \in V$, let G_i (E_i , resp.) denote the set of points that are within distance R (3R, resp.) from v_i . G_i are *disks* of radius R and the sets E_i are the corresponding *expanded disks* of radius 3R. *Size* of a disk (or expanded disk) is its cardinality.

Figure 6: Disks and Expanded Disks.

New Algorithm (Robust K-centers/K-suppliers)

- 1. Initially all points are uncovered.
- 2. Construct all disks and corresponding expanded disks.
- 3. Repeat the following K times:
 - Let G_j be the heaviest disk, i.e. contains the most uncovered points.
 - Mark as covered all points in the corresponding expanded disk E_j after placing facility at j.
 - Update all the disks and expanded disks (i.e., remove covered points).
- 4. If at least p points of V are marked as covered, then answer YES, else answer NO.

Bad Example

The algorithm fails if we greedily pick the heaviest expanded disk instead!

Figure 7: Bad example for choosing based on E_j .

Proof Idea

Let the sets of points covered by the OPTIMAL solution be O_1, \ldots, O_K .

The key observation is that if we ever pick a set G_j that covers a point in some O_i , then E_j covers all points in O_i .

Figure 8: Optimal Clusters and the Greedy Step

Proof Idea

Theorem 1 With radius R if there exists a placement of K centers that covers p customers, then the algorithm finds a placement of K centers that with a radius of 3R cover at least p customers.

$$|E_1| \ge |O_1| + \sum_{i=2}^k |E_1 \cap O_i|. \tag{1}$$

Consider the (k-1)-center problem on the set $S - E_1$. We choose E_2, E_3, \ldots, E_k . For $S - E_1$, it is clear that $O_2 - E_1, O_3 - E_1, \ldots, O_k - E_1$ is a solution, although not an optimal one. By induction, we know that

$$E_2 \cup \ldots \cup E_k | \ge |\bigcup_{i=2}^k (O_i - E_1)|$$
 (2)

Adding gives the result.

Lower bound on Cluster Size (Anonymity)

How do we publish data about individuals?

One solution: Remove identifying information (names) and then publish the information.

Problem: using public databases (voter records) people are able to infer information about individuals (or narrow the options down to a very small number).

Another approach (Agarwal, Feder, Kentapadhi, Khuller, Panigrahy, Thomas, Zhu) is to fudge the data slightly to provide anonymity.

Lower bound on Cluster Size (Anonymity)

Another approach: cluster data into dense clusters of small radius. Publish information about the cluster centers.

Problem is NP-complete even when the number of clusters is not specified!

Figure 9: Publishing anonymized data

(K, r)-Center Problem

Cluster data into K clusters and minimize the largest radius. Moreover, each cluster should have size at least r.

Condition (1) Each point in the database should have at least r - 1 other points within distance 2R.

Condition (2) Let all nodes be unmarked initially. Select an arbitrary unmarked point as a center. Select all unmarked points within distance 2R to form a cluster and mark these points.

Repeat this as long as possible, until all points are marked.

Example

Example

Example

Re-assignment Step

Reassign points to clusters to get at least r in each cluster.

Let C be the set of centers that were chosen. Add edges (capacity r) from s to each node in C. Add an edge of unit capacity from a node $c \in C$ to a node $v \in V d(v, c) \leq 2R$. Check to see if a flow of value r|C| can be found.

Re-assignment

Suppose r units of flow enter a node $v \in C$. The nodes of V through which the flow goes to the sink are assigned to v. Nodes of V through which no flow goes to the sink can be assigned anywhere.

(K, r, p)-Centers

Find K small clusters of size at least r so that at least p points are clustered.

Algorithm:

(Filtering Step) Let S be points v such that $|N(v, 2R)| \ge r$. Check if $|S| \ge p$, otherwise exit. We only consider points in S. (Greedy Step) Choose up to K centers. Initially Q is empty. All points are uncovered initially. Let $N(v, \delta)$ be the set of *uncovered points* within distance δ of v. Once a point is covered

it is removed.

Algorithm

At each step i, pick a center c_i that satisfies the following criteria:

(a) c_i is uncovered.

(b) $|N(c_i, 2R)|$ is maximum.

All uncovered points in $N(c_i, 4R)$ are then marked as covered.

After Q is chosen, check to see if at least p points are covered, otherwise exit with failure.

(Assignment step): Form clusters as follows. For each $c_i \in Q$, form a cluster C_i centered at c_i . Each covered point is assigned to its closest cluster center.

Denote $G_i = N(c_i, 2R)$ and $E_i = N(c_i, 4R)$, which are uncovered points within distance 2R and 4R of c_i , when c_i is chosen.

(K, r, p)-Centers

Figure 10: Optimal Clusters and the Greedy Step

Observations

Figure 11: Optimal Clusters and the Greedy Step

Observations

Figure 12: Optimal Clusters and the Greedy Step

Proof

Key Points:

- Cluster centers are far apart (> 4R), so we get all the points within radius 2R (at least r).
- Once a cluster is covered by G_i , it is completely covered by E_i (get all the points).
- E_i may grab a few points from any cluster making it sparse. However, these points will eventually be re-assigned to the center in this cluster if all the points are not covered by $E_j, j \ge i$.
- Proof that we get at least p points is similar to the proof done earlier.

Lower Bound on Cluster Sizes

For facility location Karger, Minkoff and Guha, Meyerson, Munagala give a $(\frac{r}{2}, 3\rho OPT_r)$ bound.

 ρ is the approximation guarantee for facility location. Currently $\rho\approx 1.5.$

r-Cellular Clustering

Find clusters such that each cluster has at least r points. The cost for cluster C_i is $R_i \cdot n_i$ (upper bound on distortion of data) and a facility cost of f_i .

$$Min\sum_{i} cost(C_i) + f_i$$

Use primal-dual methods to get a O(1) approximation for this problem.

Conclusions

- 1. Concept of outliers can also be used for standard facility location (Charikar, Khuller, Mount, Narasimhan).
- 2. K-centers can be solved with a single pass over the data. (Data stream clustering (Charikar,Chekuri,Feder,Motwani)). Approximation factor (randomized): 8(2e).
- 3. Extensions for the two metric case (Bhatia, Guha, Khuller, Sussmann). Fix K centers so that everyone is close to a center in each of two metrics.

Approximation factor: 3. Uses matchings.

Thats all folks!

