Traffic Flow Optimization under Fairness Constraints with Lagrangian Relaxation and Cutting Plane Methods

Felix G. König

Department of Combinatorial Optimization & Graph Algorithms Technical University of Berlin

Flexible Network Design, Bertinoro 2006

Outline

Traffic Flow Optimization under Fairness Constraints

- Motivation
- The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem

- Lagrangian Relaxation to Treat Non-Linearity
- Proximal-ACCPM: An Interior Point Cutting Plane Method

B Results

- Computational Study
- Summary

Outline

Traffic Flow Optimization under Fairness Constraints

- Motivation
- The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem

- Lagrangian Relaxation to Treat Non-Linearity
- Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Result

- Computational Study
- Summary

Outline

Traffic Flow Optimization under Fairness Constraints

- Motivation
- The Constrained System Optimum Problem (CSO)
- 2 Solving the CSO Problem
 - Lagrangian Relaxation to Treat Non-Linearity
 - Proximal-ACCPM: An Interior Point Cutting Plane Method

- Computational Study
- Summary

Traffic Flow Optimization under Fairness Constraints Motivation

The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem

- Lagrangian Relaxation to Treat Non-Linearity
- Proximal-ACCPM: An Interior Point Cutting Plane Method

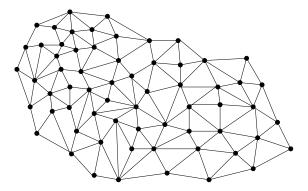
3 Resul

Outline

- Computational Study
- Summary

Route Guidance: Introduction

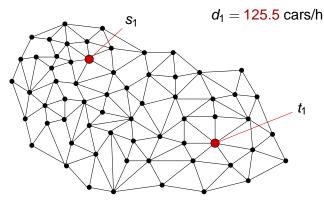
 given: sources s_k, targets t_k, demand rates d_k for traffic demands in a road network



• find "best" routes from s_k to t_k for all demands $k \in K$

Route Guidance: Introduction

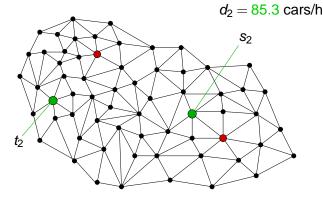
given: sources s_k, targets t_k, demand rates d_k for traffic demands in a road network



• find "best" routes from s_k to t_k for all demands $k \in K$

Route Guidance: Introduction

 given: sources s_k, targets t_k, demand rates d_k for traffic demands in a road network

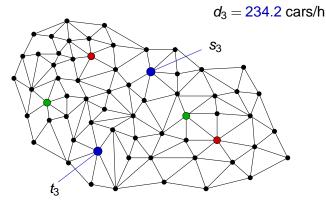


• find "best" routes from s_k to t_k for all demands $k \in K$

Felix G. König Traffic Optimization under Fairness Constraints

Route Guidance: Introduction

given: sources s_k, targets t_k, demand rates d_k for traffic demands in a road network

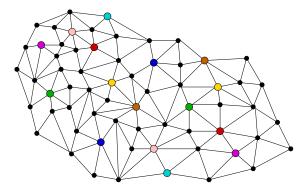


• find "best" routes from s_k to t_k for all demands $k \in K$

Felix G. König Traffic Optimization under Fairness Constraints

Route Guidance: Introduction

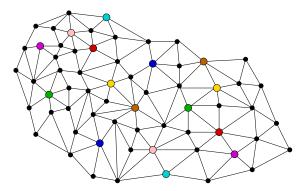
 given: sources s_k, targets t_k, demand rates d_k for traffic demands in a road network



• find "best" routes from s_k to t_k for all demands $k \in K$

Route Guidance: Introduction

 given: sources s_k, targets t_k, demand rates d_k for traffic demands in a road network



• find "best" routes from s_k to t_k for all demands $k \in K$

Route Guidance: State of Technology

Route Guidance Systems...

- ... play an increasingly important role in today's traffic:
 - in-car navigation systems
 - urban road pricing schemes / centralized traffic routing

Today's systems use static data only:

- average travel times on road links
- Iocations / times of typical rush hour congestions
- Iocations of work zones

⇒ routes computed by static shortest path calculations

Route Guidance: State of Technology

Route Guidance Systems...

- ... play an increasingly important role in today's traffic:
 - in-car navigation systems
 - urban road pricing schemes / centralized traffic routing

Today's systems use static data only:

- average travel times on road links
- Iocations / times of typical rush hour congestions
- Iocations of work zones

⇒ routes computed by static shortest path calculations

Route Guidance: State of Technology

Route Guidance Systems...

- ... play an increasingly important role in today's traffic:
 - in-car navigation systems
 - urban road pricing schemes / centralized traffic routing

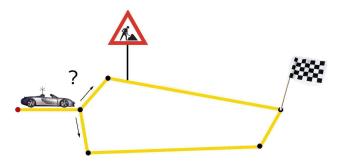
Today's systems use static data only:

- average travel times on road links
- Iocations / times of typical rush hour congestions
- Iocations of work zones

⇒ routes computed by static shortest path calculations

Motivation Constrained System Optimum

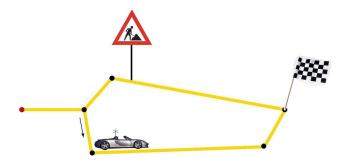
Results of Widespread Static Route Guidance



- suggested routes often not the quickest
- drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

Motivation Constrained System Optimum

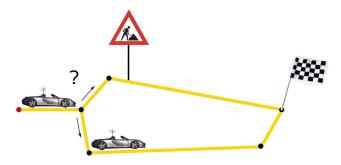
Results of Widespread Static Route Guidance



- suggested routes often not the quickest
- drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

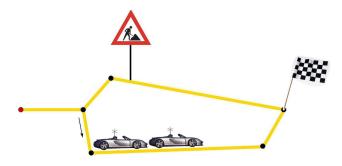
Motivation Constrained System Optimum

Results of Widespread Static Route Guidance



- suggested routes often not the quickest
- drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

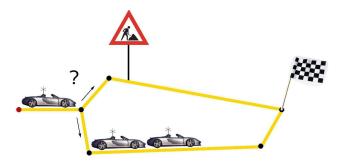
Results of Widespread Static Route Guidance



- suggested routes often not the quickest
- drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

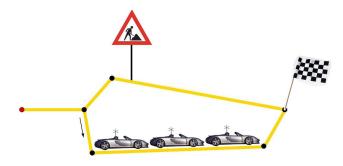
Motivation Constrained System Optimum

Results of Widespread Static Route Guidance



- suggested routes often not the quickest
- drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

Results of Widespread Static Route Guidance

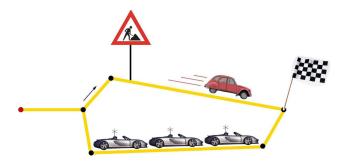


- suggested routes often not the quickest
- drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

Motivation Constrained System Optimum

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same **W** route suggestions:



suggested routes often not the quickest

drivers will not accept route suggestions

→ benefits of route guidance strongly compromised

Motivation Constrained System Optimum

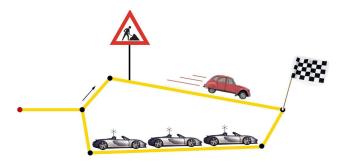
Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same **W** route suggestions:

- suggested routes often not the quickest
- or drivers will not accept route suggestions

→ benefits of route guidance strongly compromised

Results of Widespread Static Route Guidance



- suggested routes often not the quickest
- or drivers will not accept route suggestions
- → benefits of route guidance strongly compromised

Motivation Constrained System Optimum

The Need for Intelligent Traffic Routing

Problem

In order for Route Guidance Systems to help manage tomorrow's ever-increasing traffic demands, they must be able to evaluate travel times realistically.

Solution

Intelligent Route Guidance Systems need to take into account the effects on travel times of their own route suggestions.

Some global optimization scheme is needed!

Motivation Constrained System Optimum

The Need for Intelligent Traffic Routing

Problem

In order for Route Guidance Systems to help manage tomorrow's ever-increasing traffic demands, they must be able to evaluate travel times realistically.

Solution

Intelligent Route Guidance Systems need to take into account the effects on travel times of their own route suggestions.

Some global optimization scheme is needed!

Motivation Constrained System Optimum

The Need for Intelligent Traffic Routing

Problem

In order for Route Guidance Systems to help manage tomorrow's ever-increasing traffic demands, they must be able to evaluate travel times realistically.

Solution

Intelligent Route Guidance Systems need to take into account the effects on travel times of their own route suggestions.

~ Some global optimization scheme is needed!

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

- "unfair": drivers with same origin and destination may have vastly different travel times
- or drivers will not accept these route suggestions!

Motivation Constrained System Optimum

Two Definitions of Optimality

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

- "unfair": drivers with same origin and destination may have vastly different travel times
- ~ drivers will not accept these route suggestions!

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

- "unfair": drivers with same origin and destination may have vastly different travel times
- → drivers will not accept these route suggestions!

User Equilibrium

No user can improve his travel time by individually changing his route.

 \Rightarrow "natural" flow pattern of unguided traffic

Result:

• "fair": drivers with same origin and destination have same travel times

- sum of all travel times possibly a multiple of the one in system optimum ("price of anarchy", e.g. [Roughgarden and Tardos 2002])
- no indication about network performance (Braess paradox)

User Equilibrium

No user can improve his travel time by individually changing his route.

⇒ "natural" flow pattern of unguided traffic

Result:

• "fair": drivers with same origin and destination have same travel times

- sum of all travel times possibly a multiple of the one in system optimum ("price of anarchy", e.g. [Roughgarden and Tardos 2002])
- no indication about network performance (Braess paradox)

User Equilibrium

No user can improve his travel time by individually changing his route.

⇒ "natural" flow pattern of unguided traffic

Result:

 "fair": drivers with same origin and destination have same travel times

- sum of all travel times possibly a multiple of the one in system optimum ("price of anarchy", e.g. [Roughgarden and Tardos 2002])
- no indication about network performance (Braess paradox)

User Equilibrium

No user can improve his travel time by individually changing his route.

⇒ "natural" flow pattern of unguided traffic

Result:

 "fair": drivers with same origin and destination have same travel times

Problems:

 sum of all travel times possibly a multiple of the one in system optimum ("price of anarchy", e.g. [Roughgarden and Tardos 2002])

no indication about network performance (Braess paradox)

User Equilibrium

No user can improve his travel time by individually changing his route.

⇒ "natural" flow pattern of unguided traffic

Result:

 "fair": drivers with same origin and destination have same travel times

- sum of all travel times possibly a multiple of the one in system optimum ("price of anarchy", e.g. [Roughgarden and Tardos 2002])
- no indication about network performance (Braess paradox)

Traffic Flow Optimization under Fairness Constraints Motivation

The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem

- Lagrangian Relaxation to Treat Non-Linearity
- Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Result

Outline

- Computational Study
- Summary

System Optimum with Fairness Constraints

Idea [Jahn, Möhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths drivers would not accept:

- τ_p := travel time on path p in UE
- $T_k :=$ travel time on paths chosen by commodity k in UE

 \Rightarrow only use paths *p* with

$$au_{
ho} \leq oldsymbol{arphi} \cdot oldsymbol{T}_k$$

• suggestion: $\varphi = 1.02$

⇒ drivers are suggested paths which they think are fair!

System Optimum with Fairness Constraints

Idea [Jahn, Möhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths drivers would not accept:

- $\tau_p :=$ travel time on path *p* in UE
- $T_k :=$ travel time on paths chosen by commodity k in UE

 \Rightarrow only use paths *p* with

$$au_{
ho} \leq oldsymbol{arphi} \cdot oldsymbol{T}_k$$

• suggestion: $\varphi = 1.02$

⇒ drivers are suggested paths which they think are fair!

System Optimum with Fairness Constraints

Idea [Jahn, Möhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths drivers would not accept:

- $\tau_p :=$ travel time on path *p* in UE
- *T_k* := travel time on paths chosen by commodity *k* in UE

 \Rightarrow only use paths *p* with

$$au_{
ho} \leq arphi \cdot T_k$$

• suggestion: $\varphi = 1.02$

⇒ drivers are suggested paths which they think are fair!

System Optimum with Fairness Constraints

Idea [Jahn, Möhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths drivers would not accept:

- $\tau_p :=$ travel time on path *p* in UE
- T_k := travel time on paths chosen by commodity k in UE

 \Rightarrow only use paths *p* with

$$au_{
ho} \leq arphi \cdot T_k$$

• suggestion: $\varphi = 1.02$

⇒ drivers are suggested paths which they think are fair!

Results [Jahn, Möhring, Schulz, Stier-Moses 2005]

With appropriate φ , τ , solutions to CSO yield

- a lot more fairness than System Optimum
 - travel time of 99% of all users at most 30% higher than on fastest route.
 - in SO: 50%
- much better system performance than User Equilibrium
 total travel time only ¹/₂ as far away from SO as UE
- better routes for most drivers
 - 75% spend less travel time than in UE
 - only 0.4% spend 10% more (SO: 5%)

Results [Jahn, Möhring, Schulz, Stier-Moses 2005]

With appropriate φ , τ , solutions to CSO yield

- a lot more fairness than System Optimum
 - travel time of 99% of all users at most 30% higher than on fastest route.
 - in SO: 50%
- much better system performance than User Equilibrium
 total travel time only ¹/₂ as far away from SO as UE
- better routes for most drivers
 - 75% spend less travel time than in UE
 - only 0.4% spend 10% more (SO: 5%)

Results [Jahn, Möhring, Schulz, Stier-Moses 2005]

With appropriate φ , τ , solutions to CSO yield

- a lot more fairness than System Optimum
 - travel time of 99% of all users at most 30% higher than on fastest route.
 - in SO: 50%
- much better system performance than User Equilibrium
 total travel time only ¹/₃ as far away from SO as UE

better routes for most drivers

75% spend less travel time than in UE

only 0.4% spend 10% more (SO: 5%)

Results [Jahn, Möhring, Schulz, Stier-Moses 2005]

With appropriate φ , τ , solutions to CSO yield

- a lot more fairness than System Optimum
 - travel time of 99% of all users at most 30% higher than on fastest route.
 - in SO: 50%
- much better system performance than User Equilibrium
 total travel time only ¹/₃ as far away from SO as UE
- better routes for most drivers
 - 75% spend less travel time than in UE
 - only 0.4% spend 10% more (SO: 5%)

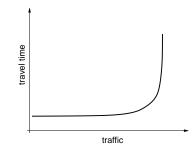
Minimize	$\sum_{a \in A} I_a(x_a) x_a$	
subject to	$\sum_{k\in K} \mathbf{Z}_{a}^{k} = \mathbf{X}_{a}$	<i>a</i> ∈ <i>A</i>
	$\sum_{p \in P_k: a \in p} x_p = z_a^k$	<i>a</i> ∈ <i>A</i>
	$\sum_{p\in P_k}^{p\in P_k} x_p = d_k$	$k \in K$
	I K	$p \in P_k : x_p > 0; \ k \in K$
	$x_{ ho} \geq 0$	$oldsymbol{ ho}\in oldsymbol{P}$

Minimize	$\sum_{a \in A} I_a(x_a) x_a$	
subject to	$\sum_{k\in K} \mathbf{Z}_{a}^{k} = \mathbf{x}_{a}$	<i>a</i> ∈ <i>A</i>
	$\sum_{p \in P_k: a \in p} x_p = z_a^k$	$a \in A$
	$\sum_{p\in P_k}^{p\in P_k} x_p = d_k$	$k \in K$
	, ,	$p \in P_k : x_p > 0; \ k \in K$
	$x_{ m p} \geq 0$	$oldsymbol{ ho}\in oldsymbol{P}$

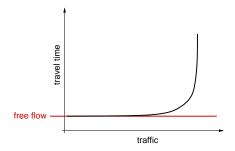
Minimize	$\sum_{a \in A} I_a(x_a) x_a$	
subject to	$\sum_{k\in K} z_a^k = x_a$	<i>a</i> ∈ <i>A</i>
	$\sum_{p \in P_k: a \in p} x_p = z_a^k$	<i>a</i> ∈ <i>A</i>
	$\sum_{p\in P_k} x_p = d_k$	$k \in K$
	$ au_{ ho} \leq arphi T_k$	$p \in P_k : x_p > 0; \ k \in K$
	$x_{ ho} \geq 0$	$oldsymbol{ ho}\in oldsymbol{P}$

Minimize	$\sum_{a \in A} I_a(x_a) x_a$	
subject to	$\sum_{k\in K} z_a^k = x_a$	<i>a</i> ∈ <i>A</i>
	$\sum_{p\in P_k:a\in p}^{k} x_p = z_a^k$	$a \in A$
	$\sum_{p\in P_k}^{p\in P_k} x_p = d_k$	$k \in K$
	$r = \kappa$	$p \in P_k : x_p > 0; \ k \in K$
	$x_{ ho} \geq 0$	$oldsymbol{ ho}\in oldsymbol{P}$

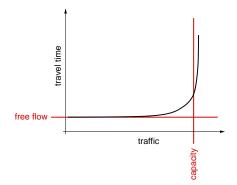
• CSO is non-linear: travel times vary with flow rate



• CSO is non-linear: travel times vary with flow rate



• CSO is non-linear: travel times vary with flow rate



Felix G. König Traffic Optimization under Fairness Constraints

- CSO is non-linear: travel times vary with flow rate
- exponentially many paths in G
 - \Rightarrow cannot deal with variables x_{ρ} explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:

- solve CSO by variant of Frank-Wolfe convex combinations algorithm and constrained shortest path calculations
- runtime acceptable: instances with a few thousand nodes / arcs / commodities take some minutes
- improvement needed for practical use

- CSO is non-linear: travel times vary with flow rate
- exponentially many paths in G
 - \Rightarrow cannot deal with variables x_p explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:

- solve CSO by variant of Frank-Wolfe convex combinations algorithm and constrained shortest path calculations
- runtime acceptable: instances with a few thousand nodes / arcs / commodities take some minutes
 - improvement needed for practical use

- CSO is non-linear: travel times vary with flow rate
- exponentially many paths in G
 - \Rightarrow cannot deal with variables x_p explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:

- solve CSO by variant of Frank-Wolfe convex combinations algorithm and constrained shortest path calculations
- runtime acceptable: instances with a few thousand nodes / arcs / commodities take some minutes
 - improvement needed for practical use

Motivation Constrained System Optimum

A Different Approach

Idea

• define appropriate Lagrangian relaxation

use cutting plane method to solve dual problem

 similar approach successfully applied to other multi-commodity flow problems [Babonneau and Vial 2005]

Notivation Constrained System Optimum

A Different Approach

Idea

- define appropriate Lagrangian relaxation
- use cutting plane method to solve dual problem

 similar approach successfully applied to other multi-commodity flow problems [Babonneau and Vial 2005]

Notivation Constrained System Optimum

A Different Approach

Idea

- define appropriate Lagrangian relaxation
- use cutting plane method to solve dual problem

 similar approach successfully applied to other multi-commodity flow problems [Babonneau and Vial 2005]

- Traffic Flow Optimization under Fairness Constraints
 Motivation
 - The Constrained System Optimum Problem (CSO)
- Solving the CSO Problem
 - Lagrangian Relaxation to Treat Non-Linearity
 - Proximal-ACCPM: An Interior Point Cutting Plane Method

Result

Outline

- Computational Study
- Summary

Lagrangian Relaxation Proximal-ACCPM

Lagrangian Relaxation for CSO

$$\begin{array}{ll} \textit{Minimize} & L(x,u) := \sum_{a \in A} l_a(x_a) x_a \\ \textit{subject to} & \sum_{p \in P_k : a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k : x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \\ & \sum_{k \in K} z_a^k = x_a & a \in A \end{array}$$

Lagrangian Relaxation Proximal-ACCPM

Lagrangian Relaxation for CSO

• drop constraints coupling total and commodity flows

$$\begin{array}{ll} \textit{Minimize} & L(x,u) := \sum_{a \in A} l_a(x_a) x_a \\ \textit{subject to} & \sum_{p \in P_k: a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \\ & \sum_{k \in K} z_a^k = x_a & a \in A \end{array}$$

Lagrangian Relaxation Proximal-ACCPM

Lagrangian Relaxation for CSO

• drop constraints coupling total and commodity flows

$$\begin{array}{ll} \textit{Minimize} & L(x,u) := \sum_{a \in A} l_a(x_a) x_a \\ \textit{subject to} & \sum_{p \in P_k: a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

Lagrangian Relaxation Proximal-ACCPM

Lagrangian Relaxation for CSO

• add penalty terms with multipliers u_i to objective

$$\begin{array}{ll} \textit{Minimize} & L(x,u) := \sum_{a \in A} l_a(x_a) x_a \\ \textit{subject to} & \sum_{p \in P_k: a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

Lagrangian Relaxation for CSO

• add penalty terms with multipliers u_i to objective

$$\begin{array}{lll} \textit{Minimize} & L(x,u) := \sum_{a \in A} l_a(x_a) x_a + \sum_{a \in A} \left(u_a \cdot \left(\sum_{k \in K} z_a^k - x_a \right) \right) \\ \textit{subject to} & \sum_{p \in P_k : a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k : x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

1

1

1

 $\begin{array}{lll} \text{Minimize} & L(x,u) := \sum_{a \in A} l_a(x_a) x_a & + & \sum_{a \in A} \left(u_a \cdot \left(\sum_{k \in K} z_a^k - x_a \right) \right) \\ \text{subject to} & \sum_{p \in P_k: a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$

1 🐼

Lagrangian Relaxation Proximal-ACCPM

1

1

 \mathbf{x}

Lagrangian Relaxation for CSO

• Lagrangian separable in x and z?

$$\begin{array}{lll} \textit{Minimize} & \textit{L}(\textit{x},\textit{u}) := \sum_{a \in A} l_a(\textit{x}_a)\textit{x}_a & + & \sum_{a \in A} \left(\textit{u}_a \cdot \left(\sum_{k \in K} \textit{z}_a^k - \textit{x}_a \right) \right) \\ \textit{subject to} & \sum_{p \in P_k: a \in p} \textit{x}_p = \textit{z}_a^k & a \in A \\ & \sum_{p \in P_k} \textit{x}_p = \textit{d}_k & k \in K \\ & & \tau_p \leq \varphi \textit{T}_k & p \in P^k: \textit{x}_p > 0; \ k \in K \\ & & & x_p \geq 0 & p \in P \end{array}$$

Lagrangian Relaxation Proximal-ACCPM

Lagrangian Relaxation for CSO

• Lagrangian separable in x and z?

$$\begin{array}{lll} \textit{Minimize} & L(x,u) := \overbrace{\substack{a \in A}}^{L_1(x,u)} (I_a(\underbrace{x_a}) - u_a) \cdot \underbrace{x_a} & + \overbrace{\sum_{k \in K}}^{L_2(z,u)} \\ \text{subject to} & \sum_{\substack{p \in P_k: a \in p}} x_p = z_a^k & a \in A \\ & \sum_{\substack{p \in P_k: a \in p}} x_p = d_k & k \in K \\ & & \chi_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & & & x_p \geq 0 & p \in P \end{array}$$

Lagrangian Relaxation Proximal-ACCPM

Lagrangian Relaxation for CSO

→ Yes!

$$\begin{array}{lll} \textit{Minimize} & L(x,u) := \overbrace{\sum_{a \in A} (I_a(x_a) - u_a) \cdot x_a}^{L_1(x,u)} & + \overbrace{\sum_{k \in K} \sum_{a \in A} u_a \cdot z_a^k}^{L_2(z,u)} \\ \textit{subject to} & \sum_{p \in P_k: a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

Lagrangian Relaxation for CSO

• easier problem: analytical minimization in x...

$$\begin{array}{lll} \textit{Minimize} & L(x,u) := \overbrace{\substack{a \in A}}^{L_1(x,u)} + \overbrace{\sum_{k \in K} \sum_{a \in A}}^{L_2(z,u)} \\ \textit{subject to} & \sum_{p \in P_k: a \in p} x_p = z_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

Lagrangian Relaxation for CSO

• ...and |K| constrained shortest path problems in z^k

$$\begin{array}{lll} \textit{Minimize} & \textit{L}(x,u) := \overbrace{\sum_{a \in A} (l_a(x_a) - u_a) \cdot x_a}^{\textit{L}_1(x,u)} + \overbrace{\sum_{k \in K} \sum_{a \in A} u_a \cdot \textbf{Z}_a^k}^{\textit{L}_2(z,u)} \\ \textit{subject to} & \sum_{p \in P_k: a \in p} x_p = \textbf{Z}_a^k & a \in A \\ & \sum_{p \in P_k} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k: x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

1 🐼

Traffic Optimization Solving the CSO Problem Results Lagrangian Relaxation Proximal-ACCP

Lagrangian Relaxation for CSO

• up next: dual problem (maximize this minimum over u)

$$\begin{array}{ll} \textit{Minimize} & L(x,u) := \overbrace{\substack{a \in A}}^{L_1(x,u)} (l_a(x_a) - u_a) \cdot x_a & + \overbrace{\substack{\sum a \in A}}^{L_2(z,u)} \\ \text{subject to} & \sum_{\substack{p \in P_k: a \in p}} x_p = z_a^k & a \in A \\ & \sum_{\substack{p \in P_k}} x_p = d_k & k \in K \\ & \tau_p \leq \varphi T_k & p \in P^k : x_p > 0; \ k \in K \\ & x_p \geq 0 & p \in P \end{array}$$

1 🐼

- Traffic Flow Optimization under Fairness Constraints Motivation

 - Solving the CSO Problem
 - Lagrangian Relaxation to Treat Non-Linearity
 - Proximal-ACCPM: An Interior Point Cutting Plane Method

Outline

Analytic Center Cutting Plane Method

approximation scheme for maximization of a concave function over a convex set

 implementation by Babonneau, Vial et. al. at LogiLab, University of Geneva

Two components:

- query point generator
 - manages a localization set containing all optimal points
 - selects query points which are tried for optimality

oracle

- generates cutting planes to further bound the localization set
- problem dependent!

Analytic Center Cutting Plane Method

- approximation scheme for maximization of a concave function over a convex set
- implementation by Babonneau, Vial et. al. at LogiLab, University of Geneva

Two components:

- query point generator
 - manages a localization set containing all optimal points
 - selects query points which are tried for optimality

oracle

- generates cutting planes to further bound the localization set
- problem dependent!

Analytic Center Cutting Plane Method

- approximation scheme for maximization of a concave function over a convex set
- implementation by Babonneau, Vial et. al. at LogiLab, University of Geneva

Two components:

- query point generator
 - manages a localization set containing all optimal points
 - selects query points which are tried for optimality

• oracle

- generates cutting planes to further bound the localization set
- problem dependent!

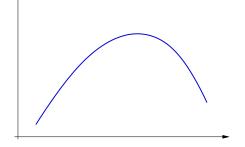
Analytic Center Cutting Plane Method

- approximation scheme for maximization of a concave function over a convex set
- implementation by Babonneau, Vial et. al. at LogiLab, University of Geneva

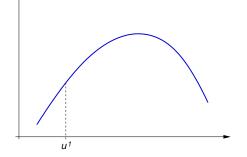
Two components:

- query point generator
 - manages a localization set containing all optimal points
 - selects query points which are tried for optimality
- oracle
 - generates cutting planes to further bound the localization set
 - problem dependent!

- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- subgradients and best objective value define cutting planes bounding the localization set

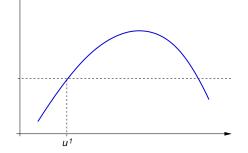


- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- ⇒ subgradients and best objective value define cutting planes bounding the localization set



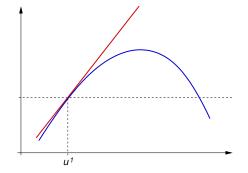
evaluate objective function ~> CSP calculations

- calculate subgradient at query point ~> easy
- ⇒ subgradients and best objective value define cutting planes bounding the localization set



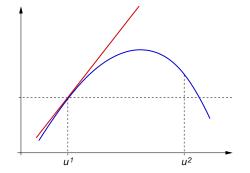
Lagrangian Relaxation Proximal-ACCPM

- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- subgradients and best objective value define cutting planes bounding the localization set



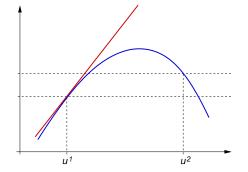
Lagrangian Relaxation Proximal-ACCPM

- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- subgradients and best objective value define cutting planes bounding the localization set



Lagrangian Relaxation Proximal-ACCPM

- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- subgradients and best objective value define cutting planes bounding the localization set

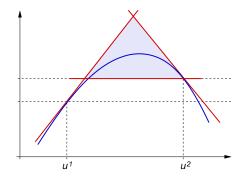


Lagrangian Relaxation Proximal-ACCPM

- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- subgradients and best objective value define cutting planes bounding the localization set



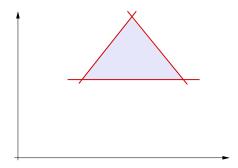
- evaluate objective function ~> CSP calculations
- calculate subgradient at query point ~> easy
- ⇒ subgradients and best objective value define cutting planes bounding the localization set



1 🔊

Query Points

- analytic center: maximum distances from cutting planes
 calculation by damped Newton method
- u-component is next query point



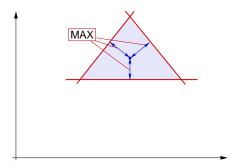
Felix G. König Traffic Optimization under Fairness Constraints

1 😣

Query Points

analytic center: maximum distances from cutting planes calculation by damped Newton method

u-component is next query point

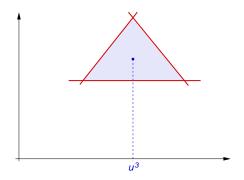


Felix G. König Traffic Optimization under Fairness Constraints

Query Points

• analytic center: maximum distances from cutting planes

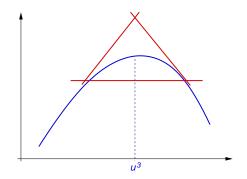
- calculation by damped Newton method
- u-component is next query point



Query Points

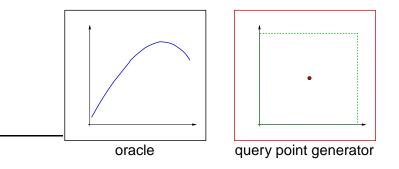
analytic center: maximum distances from cutting planes

- calculation by damped Newton method
- u-component is next query point



Lagrangian Relaxation Proximal-ACCPM

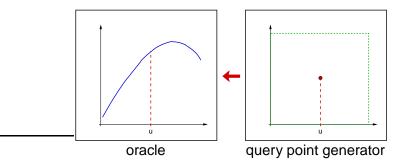
Illustration of an ACCPM Run



● localization set artificially bounded ⇒ compact

Lagrangian Relaxation Proximal-ACCPM

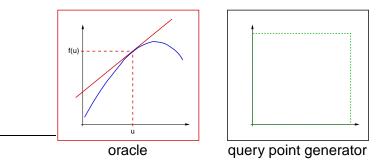
Illustration of an ACCPM Run



In each iteration, a query point is sent to the oracle,...

Lagrangian Relaxation Proximal-ACCPM

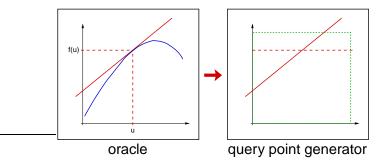
Illustration of an ACCPM Run



... the value and subgradient of θ are calculated...

Lagrangian Relaxation Proximal-ACCPM

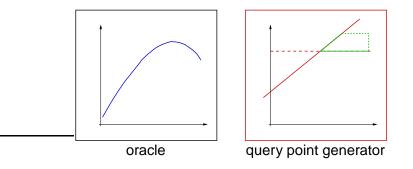
Illustration of an ACCPM Run



... which define cutting planes...

Lagrangian Relaxation Proximal-ACCPM

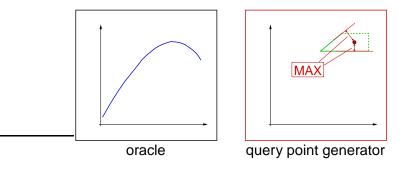
Illustration of an ACCPM Run



... to further bound the localization set.

Lagrangian Relaxation Proximal-ACCPM

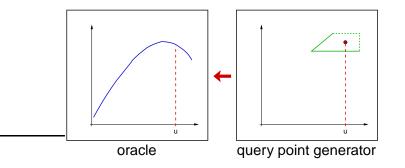
Illustration of an ACCPM Run



Then, the proximal analytic center is calculated...

Lagrangian Relaxation Proximal-ACCPM

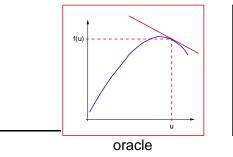
Illustration of an ACCPM Run

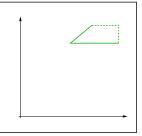


... which defines the next query point.

Lagrangian Relaxation Proximal-ACCPM

Illustration of an ACCPM Run

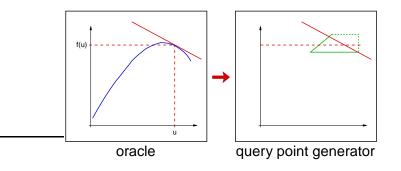




query point generator

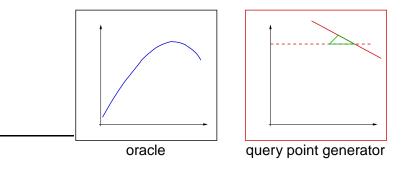
Lagrangian Relaxation Proximal-ACCPM

Illustration of an ACCPM Run



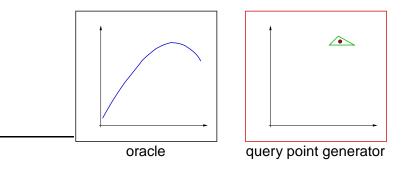
Lagrangian Relaxation Proximal-ACCPM

Illustration of an ACCPM Run



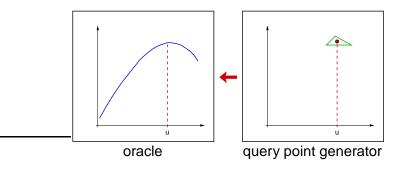
Lagrangian Relaxation Proximal-ACCPM

Illustration of an ACCPM Run



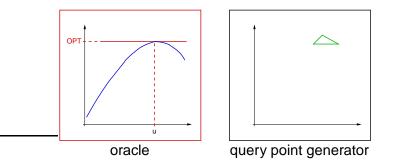
Lagrangian Relaxation Proximal-ACCPM

Illustration of an ACCPM Run



Lagrangian Relaxation Proximal-ACCPM

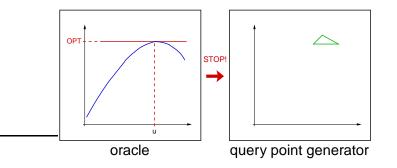
Illustration of an ACCPM Run



... until desired precision is achieved.

Lagrangian Relaxation Proximal-ACCPM

Illustration of an ACCPM Run



... until desired precision is achieved.

Accelerating convergence:

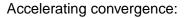
- sophisticated parameters for dynamic weighting of cuts
- cut elimination techniques
- rules for updating the proximal reference point

- multiple cuts per iteration
- active set strategies

Accelerating convergence:

- sophisticated parameters for dynamic weighting of cuts
- cut elimination techniques
- rules for updating the proximal reference point

- multiple cuts per iteration
- active set strategies



- sophisticated parameters for dynamic weighting of cuts
- cut elimination techniques
- rules for updating the proximal reference point

- multiple cuts per iteration
- active set strategies

Accelerating convergence:

- sophisticated parameters for dynamic weighting of cuts
- out elimination techniques
- rules for updating the proximal reference point

- multiple cuts per iteration
- active set strategies

Accelerating convergence:

- sophisticated parameters for dynamic weighting of cuts
- out elimination techniques
- rules for updating the proximal reference point

- multiple cuts per iteration
- active set strategies

Outline

- Traffic Flow Optimization under Fairness Constraints
 Motivation
 - The Constrained System Optimum Problem (CSO)
- Solving the CSO Problem
 - Lagrangian Relaxation to Treat Non-Linearity
 - Proximal-ACCPM: An Interior Point Cutting Plane Method

- Computational Study
- Summary

The Algorithm

Algorithm

- define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 - \Rightarrow primal lower bound
 - query point generator: damped Newton method.
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

The Algorithm

| 🍣

Algorithm

- o define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 - \Rightarrow primal lower bound
 - query point generator: damped Newton method
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

- o define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 ⇒ primal lower bound
 - query point generator: damped Newton method
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

| 🍣

- o define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 ⇒ primal lower bound
 - query point generator: damped Newton method
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

] 😣

- o define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 - \Rightarrow primal lower bound
 - query point generator: damped Newton method
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

| 🍣

- o define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 ⇒ primal lower bound
 - query point generator: damped Newton method
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

] 😣

- o define Lagrangian Relaxation of CSO
- use proximal ACCPM to solve Lagrangian dual problem
 - oracle: solve CSP problems
 - \Rightarrow primal lower bound
 - query point generator: damped Newton method
- primal solution / upper bound through heuristic: convex combination of paths from oracle
- stop when desired precision guaranteed
- different variants of labeling algorithm for CSP: basic, bidirectional, goal-oriented

Test Instances

Name	<i>V</i>	A	$ \mathcal{K} $
Sioux Falls	24	76	528
Winnipeg	1052	2836	4344
Neukoelln	1890	4040	3166
Chicago Sketch	933	2950	83113

- all but Neukoelln from Transportation Network Problems online database
- tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE Linux
- optimality gap: 0.5%

Test Instances

Name	V	A	$ \mathcal{K} $
Sioux Falls	24	76	528
Winnipeg	1052	2836	4344
Neukoelln	1890	4040	3166
Chicago Sketch	933	2950	83113

- all but Neukoelln from Transportation Network Problems online database
- tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE Linux
- optimality gap: 0.5%

Test Instances

Name	V	A	$ \mathcal{K} $
Sioux Falls	24	76	528
Winnipeg	1052	2836	4344
Neukoelln	1890	4040	3166
Chicago Sketch	933	2950	83113

- all but Neukoelln from Transportation Network Problems online database
- tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE Linux
- optimality gap: 0.5%

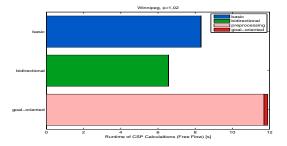
runtime of query point generator negligible

• almost all calculation time spent finding CSPs

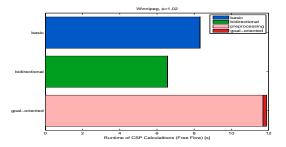
goal-directed approach slowest for free flow travel times
 time for preprocessing longer than resulting speed-up

- runtime of query point generator negligible
 almost all calculation time spent finding CSPs
- goal-directed approach slowest for free flow travel times
 time for preprocessing longer than resulting speed-up

- runtime of query point generator negligible
 - almost all calculation time spent finding CSPs
- goal-directed approach slowest for free flow travel times
 - time for preprocessing longer than resulting speed-up

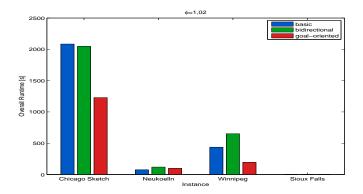


- runtime of query point generator negligible
 - almost all calculation time spent finding CSPs
- goal-directed approach slowest for free flow travel times
 - time for preprocessing longer than resulting speed-up



Overall Runtime

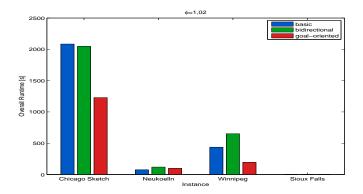
total runtime: basic / bidirectional / goal-oriented



why does goal-oriented algorithm perform best?

Overall Runtime

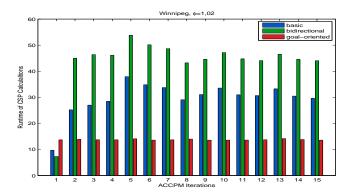
total runtime: basic / bidirectional / goal-oriented



why does goal-oriented algorithm perform best?

Effect of CSP Acceleration

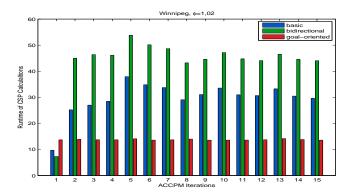
• CSP-runtime over ACCPM iterations for Winnipeg



• runtimes of basic and bidirectional algorithms increase!

Effect of CSP Acceleration

CSP-runtime over ACCPM iterations for Winnipeg



• runtimes of basic and bidirectional algorithms increase!

• edge length for CSP calculations: dual variables u

- as we approach optimum, u approaches CSO travel times
- in congested networks, direct paths become unattractive
 basic labeling algorithm is deflected from target
 infeasible paths are explored first
 - goal orientation dominates this effect

- edge length for CSP calculations: dual variables *u*
- as we approach optimum, u approaches CSO travel times
- in congested networks, direct paths become unattractive
 basic labeling algorithm is deflected from target
 infeasible paths are explored first
- goal orientation dominates this effect

- edge length for CSP calculations: dual variables u
- as we approach optimum, u approaches CSO travel times
- in congested networks, direct paths become unattractive
 basic labeling algorithm is deflected from target
 infeasible paths are explored first
 - goal orientation dominates this effect

- edge length for CSP calculations: dual variables u
- as we approach optimum, u approaches CSO travel times
- ⇒ in congested networks, direct paths become unattractive
- ⇒ basic labeling algorithm is deflected from target

→ infeasible paths are explored first

goal orientation dominates this effect

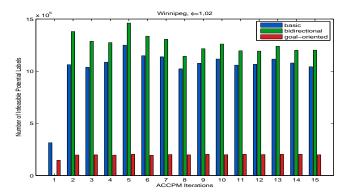
- edge length for CSP calculations: dual variables u
- as we approach optimum, u approaches CSO travel times
- ⇒ in congested networks, direct paths become unattractive
- ⇒ basic labeling algorithm is deflected from target
 - → infeasible paths are explored first
 - goal orientation dominates this effect

- edge length for CSP calculations: dual variables u
- as we approach optimum, u approaches CSO travel times
- ⇒ in congested networks, direct paths become unattractive
- ⇒ basic labeling algorithm is deflected from target
 - → infeasible paths are explored first
- goal orientation dominates this effect

100

Exploration of Nodes on Infeasible Paths

optential labels violating length bounds for Winnipeg

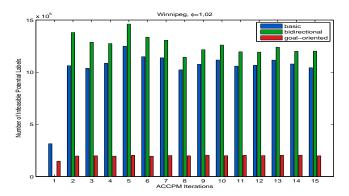


• number of these labels proportional to runtime

100

Exploration of Nodes on Infeasible Paths

optential labels violating length bounds for Winnipeg

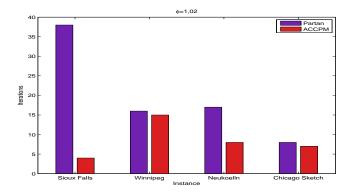


number of these labels proportional to runtime

Computational Study Summary

Comparison with Partan

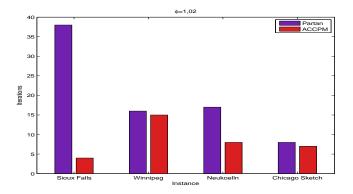
• number of iterations compared with Partan



ACCPM needs less iterations

Comparison with Partan

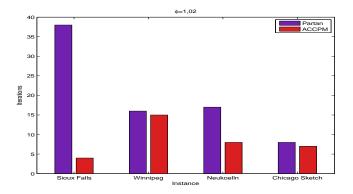
number of iterations compared with Partan



ACCPM needs less iterations

Comparison with Partan

• number of iterations compared with Partan



⇒ ACCPM needs less runtime

- Traffic Flow Optimization under Fairness Constraints
 Motivation
 - The Constrained System Optimum Problem (CSO)
- 2 Solving the CSO Problem
 - Lagrangian Relaxation to Treat Non-Linearity
 - Proximal-ACCPM: An Interior Point Cutting Plane Method

Outline

- Computational Study
- Summary

- constrained system optimum delivers equally good and fair solutions for traffic optimization
- proximal-ACCPM can be used to solve a Lagrangian relaxation of CSO
- algorithm outperforms previous approaches: $\approx \frac{1}{2}$ the runtime of Partan algorithm
- interesting relationship
 - dual variables
 - ↔ level of congestion
 - ↔ runtime of different CSP algorithms

- constrained system optimum delivers equally good and fair solutions for traffic optimization
- proximal-ACCPM can be used to solve a Lagrangian relaxation of CSO
- algorithm outperforms previous approaches: $\approx \frac{1}{2}$ the runtime of Partan algorithm
- interesting relationship
 - dual variables
 - ↔ level of congestion
 - ↔ runtime of different CSP algorithms

- constrained system optimum delivers equally good and fair solutions for traffic optimization
- proximal-ACCPM can be used to solve a Lagrangian relaxation of CSO
- algorithm outperforms previous approaches:
 - $\approx \frac{1}{2}$ the runtime of Partan algorithm
- interesting relationship
 - dual variables
 - ↔ level of congestion
 - ↔ runtime of different CSP algorithms

- constrained system optimum delivers equally good and fair solutions for traffic optimization
- proximal-ACCPM can be used to solve a Lagrangian relaxation of CSO
- algorithm outperforms previous approaches:
 - $\approx \frac{1}{2}$ the runtime of Partan algorithm
- interesting relationship

dual variables

- \leftrightarrow level of congestion
- ↔ runtime of different CSP algorithms

Thank you for your attention!

Questions?