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Websites gather data about consumer preferences / budgets.

Computation of profit maximizing prices.

Different approaches taken to model markets. Here:

Single-Minded Unlimited-Supply Pricing:
single-minded customers, each interested in a single set of
products,
unlimited supply, i.e., no production constraints.
Customer buys if the sum of prices is below her budget.

Unit-Demand Pricing:
unit-demand customers, each buy a single product in a set of
products,
unlimited or limited supply,
Customer buys only products with prices below their budgets.
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Single-Minded Unlimited-Supply Pricing (SUSP)

Given products U and sets S with values v(S) find prices p, such
that ∑

S :
∑

e∈S p(e)≤v(S)

∑

e∈S

p(e) −→ max.

 models pricing of direct connections in computer or
transportation networks.

Pricing in Graphs(G-SUSP)

Given graph G = (V , E ) and paths P, assign profit-maximizing
prices p to edges.
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First investigated by Guruswami et al. (2005). Recent
inapproximability result due to Demaine et al. (2006).

In general:

O(log |U| + log |S|)-approximation

inapproximable within O(logδ |U|) for some 0 < δ < 1

With G being a line (Highway Problem):

poly-time algo for integral valuations of constant size

pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem?
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First investigated by Guruswami et al. (2005). Recent
inapproximability result due to Demaine et al. (2006).

In general:

O(log |U| + log |S|)-approximation

inapproximable within O(logδ |U|) for some 0 < δ < 1

With G being a line (Highway Problem):

poly-time algo for integral valuations of constant size

pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem? No!
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The Highway Problem
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Theorem

The Highway Problem is NP-hard.

Sketch of Proof: Partition problem:

Given positive weights w1, . . . ,wn, does there exist S ⊂ {1, . . . , n},
such that ∑

j∈S

wj =
∑

j /∈S

wj ?

Design gadgets that capture the discrete nature of this problem.
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Weight Gadgets

Maximum profit out of Wj is 2wj .

It is obtained iff p(Wj) = p(e j
1) + p(e j

2) is set to wj or 2wj .
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2

∑n
j=1 wj is obtained iff there exists S ⊂

{1, . . . , n} with
∑

j∈S wj =
∑

j /∈S wj . �
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The sets in this instance are nested, i.e.,

S ⊆ T , T ⊆ S , or

S ∩ T = ∅.

Every instance of SUSP with nested sets can be viewed as an
instance of the Highway Problem.

Dynamic programming / scaling:

Theorem

SUSP with nested sets allows an FPTAS.
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G -SUSP
Inapproximability of Sparse

Problem Instances
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APX-hardness of G -SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparse
problem instances. Hardness of approximation still holds if:

G has constant degree d

paths have constant lengths ≤ ℓ

at most a constant number B of paths per edge

only constant height valuations

Theorem

G -SUSP on sparse instances is APX-hard.
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Best ratio in the general case: log |U| + log |S|
Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry (2005)

Not approximable within logδ |U| for some 0 < δ < 1.
Demaine, Feige, Hajiaghayi, Salavatipour (2006)

Can we do better on sparse problem instances, i.e., can we obtain
approximation ratios depending on

ℓ, the maximum cardinality of any set S ∈ S

B, the maximum number of sets containing some product
e ∈ U

rather than |U| and |S|?
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An O(log ℓ + log B)-Approximation
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Let δ(S) = v(S)/|S | be price per product of set S .

1 Round all δ(S) to powers of 2. Let S = S0 ∪ . . . ∪ St where
t = ⌈log ℓ2B⌉ − 1. In Si : δ(S) > δ(T ) ⇒ δ(S)/δ(T ) ≥ ℓ2B.
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2 In each Si select non-intersecting sets with maximum δ-value
and compute optimal prices.
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Analysis:

Opt(S) ≤
∑t

i=1 Opt(Si )

Let S ∈ Si , I(S) intersecting sets with smaller δ-values:

v(S) ≥
∑

T∈I(S)

v(T )

Let S∗
i be non-intersecting sets with max. δ as in the algo.

Then
Opt(Si ) ≤ 2 · Opt(S∗

i ),

and, since we compute maxi Opt(S∗
i ):

Theorem

The above algorithm has approximation ratio O(log ℓ + log B).
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Upper bounding technique

We relate Opt(S∗
i ) to Opt(Si ) by using as an upper bound

Opt(Si ) ≤
∑

S∈Si

v(S),

i.e., the sum of all valuations.

Using this upper bounding technique, no approximation ratio
o(log B) can be achieved.

In many applications: B >> ℓ.

Can we obtain ratios independent of B?
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Define (smoothed) s-SUSP by changing the objective to

∑

S∈Λ(p)

∑

e∈S

p(e),

where Λ(p) = {S ∈ S | p(e) ≤ δ(S)∀ e ∈ S}.

We derive an O(ℓ)-approximation for s-SUSP.

1 For every e ∈ U compute the optimal price p∗(e) assuming all
other prices were 0.

2 Resolve existing conflicts.

Set S is conflicting, if

∃ e, f ∈ S : p∗(e) ≤ δ(S) < p∗(f ).
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Upper bounding technique

1 For every e ∈ U compute the optimal price p∗(e) assuming all
other prices were 0.

2 Our upper bound: Opt ≤
∑

e∈U p∗(e)
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Summary (SUSP):

Hardness results

NP-hardness of the Highway Problem
APX-hardness of G -SUSP for sparse instances

Approximation Algorithms

O(log ℓ + log B)-approximation ( partitioning)
O(ℓ2)-approximation ( conflict graph)
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Unit-Demand Pricing
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Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgets
b(c , e) ∈ R

+
0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.
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Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgets
b(c , e) ∈ R

+
0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R
+
0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affording
to buy any product.
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Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgets
b(c , e) ∈ R

+
0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R
+
0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affording
to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑
c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)
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Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgets
b(c , e) ∈ R

+
0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R
+
0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affording
to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑
c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

∑
c∈A(p) max{p(e) | p(e) ≤ b(c , e)} (Udp-Max-Npl)
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Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgets
b(c , e) ∈ R

+
0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R
+
0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affording
to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑
c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

∑
c∈A(p) max{p(e) | p(e) ≤ b(c , e)} (Udp-Max-Npl)

∑
c∈A(p) p

(
argmin{rc(e) | e : p(e) ≤ b(c , e)}

)

(Udp-Rank-Npl)
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Unit-Demand Pricing (UDP)

Given products U and consumer samples C consisting of budgets
b(c , e) ∈ R

+
0 ∀c ∈ C, e ∈ U , and rankings rc : U → {1, . . . , |U|}.

For prices p : U → R
+
0 :

A(p) = {c ∈ C | ∃e ∈ U : p(e) ≤ b(c , e)} = consumers affording
to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

∑
c∈A(p) min{p(e) | p(e) ≤ b(c , e)} (Udp-Min-Npl)

∑
c∈A(p) max{p(e) | p(e) ≤ b(c , e)} (Udp-Max-Npl)

∑
c∈A(p) p

(
argmin{rc(e) | e : p(e) ≤ b(c , e)}

)

(Udp-Rank-Npl)

Given a price ladder constraint (PL), p(e1) ≤ · · · ≤ p(e|U|),
Udp-{Min,Max,Rank}-Pl asks for prices p satisfying PL.
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UDP introduced as non-parametric multi-product pricing in [1].
[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ?
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UDP introduced as non-parametric multi-product pricing in [1].
[1] Glynn, Rusmevichientong and Van Roy (2003)

[2] Aggarwal, Feder, Motwani and Zhu (2004)

Udp-Min-{Pl,Npl}:

Udp-Min-Pl poly-time for uniform budgets consumers [1].

Udp-Min-Npl APX-hard, has O(log |C|)-approx [2].

Udp-Max-{Pl,Npl}:

Udp-Max-Pl has a PTAS [2].

Udp-Max-Pl, limited supply: 4-approx [2].

Udp-Max-Npl 16/15-hard, has 1.59-approx [2].

Q: Udp-Min-Npl: Is there a const approx ? No!
Udp-Max-Pl: Is PTAS best possible approx ?
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Udp-Min-Npl: Is there a const approx ? No!
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Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) for
some ε > 0, unless NP ⊆ DTIME(nO(log log n)).
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Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) for
some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:
Let α(G ) = size of the maximum independent set in graph G .
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Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) for
some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:
Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.
There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.
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Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) for
some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:
Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.
There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Given G ∈ G, we reduce finding α(G) to Udp-Min-Pl.
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Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) for
some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:
Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.
There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Given G ∈ G, we reduce finding α(G) to Udp-Min-Pl.

Assume a.c.: Udp-Min-Pl has O(logε−δ |C|)-approx for some δ > 0.
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Recall: Udp-Min-Npl has O(log |C|)-approx [2]. We prove:

Theorem

Udp-Min-{Pl,Npl} is not approximable within O(logε |C|) for
some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Sketch of Proof:
Let α(G ) = size of the maximum independent set in graph G .

Proposition [Alon, Feige, Wigderson, Zuckerman’95]

n ∈ N, G = {G : G = (V , E ) with max degree O(log n), |V | = n}.
There is ε > 0, s.t. O(logε n)-approx to α(G ) is NP-hard for G ∈ G.

Given G ∈ G, we reduce finding α(G) to Udp-Min-Pl.

Assume a.c.: Udp-Min-Pl has O(logε−δ |C|)-approx for some δ > 0.

We will show that this gives O(logε n)-approx for α(G) in time nO(log log n).
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Define PL: p(e00) ≤ p(e01) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e10) ≤ · · · .
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Define PL: p(e00) ≤ p(e01) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e10) ≤ · · · .

Let µ = 4(∆ + 1) and γ = µ−∆−1/n.
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Sketch of Proof:
G = (V , E ) ∈ G of max degree ∆, def instance of Udp-Min-Pl:

V = V0 ∪ . . . ∪ V∆: (∆ + 1)-vertex-coloring of G .

Let Vi = {vij | j = 0, . . . , |Vi | − 1}.

V(vij) = {vkℓ | {vij , vkℓ} ∈ E and k < i} = vertices adjacent to vij

in color class with index < i

Products / PL: For every vij ∈ V we have a product eij .

Define PL: p(e00) ≤ p(e01) ≤ · · · ≤ p(e0,|V0|−1) ≤ p(e10) ≤ · · · .

Let µ = 4(∆ + 1) and γ = µ−∆−1/n.

For every product eij define pij = µi−∆ + jγ.
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Sketch of Proof:
Consumers: For vij ∈ V define a set

Cij = {ct
ij | t = 0, . . . , µ∆−i − 1} of identical consumers

with budgets

b(ct
ij , eij) = pij and

b(ct
ij , ekℓ) = pkℓ for all k ,ℓ with vkℓ ∈ V(vij).
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Sketch of Proof:
Consumers: For vij ∈ V define a set

Cij = {ct
ij | t = 0, . . . , µ∆−i − 1} of identical consumers

with budgets

b(ct
ij , eij) = pij and

b(ct
ij , ekℓ) = pkℓ for all k ,ℓ with vkℓ ∈ V(vij).

In analogy to coloring V = V0 ∪ . . . ∪ V∆ denote consumers

C = C0 ∪ . . . ∪ C∆,

where Ci =
⋃

j Cij .
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .
(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .
(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ct
ij ∈ Cij can afford product eij at price pij
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .
(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ct
ij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ct
ij
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .
(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ct
ij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ct
ij

⇒ eij is the product with smallest price that any c t
ij can afford
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .
(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ct
ij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ct
ij

⇒ eij is the product with smallest price that any c t
ij can afford

⇒ revenue of consumers Cij ≥ |Cij | · pij = µ∆−i
(
µi−∆ + jγ

)
≥ 1
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Sketch of Proof: Soundness: optUDP ≥ α(G ), that is:

(large IS in G ) ⇒ (high revenue in Udp)

For an IS V ′ of G , define prices p:
for vij ∈ V ′ set p(eij) = pij , else set p(eij) = pij + γ.
(pij ’s differ by ≥ γ) ⇒ prices p(·) fulfill PL

Consider vij ∈ V ′ and corresponding consumers Cij .
(∀vkℓ ∈ V(vij) : vkℓ /∈ V ′)

⇒ each consumer ct
ij ∈ Cij can afford product eij at price pij

⇒ prices of products ekℓ exceed thresholds pkℓ of each ct
ij

⇒ eij is the product with smallest price that any c t
ij can afford

⇒ revenue of consumers Cij ≥ |Cij | · pij = µ∆−i
(
µi−∆ + jγ

)
≥ 1

⇒ prices p result in revenue ≥ |V ′|, so optUDP ≥ α(G )
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+.
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =
∑

Cij⊆C−
r(Cij) ≤

n
2(∆+1)
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =
∑

Cij⊆C−
r(Cij) ≤

n
2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =
∑

Cij⊆C−
r(Cij) ≤

n
2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n
∆+1
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =
∑

Cij⊆C−
r(Cij) ≤

n
2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n
∆+1 ⇒ r(C+) = r(C) − r(C−) ≥ (1/2)r(C)
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =
∑

Cij⊆C−
r(Cij) ≤

n
2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n
∆+1 ⇒ r(C+) = r(C) − r(C−) ≥ (1/2)r(C)

∀vij ∈ V ′: Cij ⊆ C+, r(Cij) = |Cij | · pij = µ∆−i
(
µi−∆ + jγ

)
≤ 2
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Sketch of Proof: Completeness: |V ′| ≥ 1
4 revenue(C), V ′-IS:

(high revenue in Udp) ⇒ (large IS in G )

Let p()–prices found by approx algo, r(C), r(Cij), r(ct
ij)-revenues.

W.l.o.g.: price of each product eij ∈ {pij , pij + γ}

C+ df
= {ct

ij | r(c
t
ij) = pij}, C

− = C\C+. Obs: ∀i , j : Cij ⊆ C+ or Cij ⊆ C−.

Goal: define V ′ = {vij | Cij ⊆ C+}, show V ′–large IS.

Obs: r(C−) =
∑

Cij⊆C−
r(Cij) ≤

n
2(∆+1)

Obs: α(G) ≥ n/(∆ + 1); easy to find prices resulting in revenue n/(∆ + 1)

⇒ wlog: r(C) ≥ n
∆+1 ⇒ r(C+) = r(C) − r(C−) ≥ (1/2)r(C)

∀vij ∈ V ′: Cij ⊆ C+, r(Cij) = |Cij | · pij = µ∆−i
(
µi−∆ + jγ

)
≤ 2

⇒ |V ′| = |{vij | Cij ⊆ C+}| ≥ (1/2)r(C+) ≥ (1/4)r(C)
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Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)
for any ε′ > 0.
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Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)
for any ε′ > 0.

r(C) is O(logε−δ |C|)-approx to optUDP
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Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)
for any ε′ > 0.

r(C) is O(logε−δ |C|)-approx to optUDP

⇒ |V ′| ≥ 1
4 r(C) ≥ 1

O(logε−δ |C|)
optUDP ≥ 1

O(logε n)α(G )
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Sketch of Proof: Finish:

Recall: |C| = ♯ consumers, and log |C| ≤ log nµ∆ = O(log1+ε′ n)
for any ε′ > 0.

r(C) is O(logε−δ |C|)-approx to optUDP

⇒ |V ′| ≥ 1
4 r(C) ≥ 1

O(logε−δ |C|)
optUDP ≥ 1

O(logε n)α(G )

By Proposition finding such an IS set is NP-hard.

The size of our Udp-Min-Pl instance is roughly

n · (log n)log n = nO(log log n)

and the running time of our approx algo is polynomial in this
expression.
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Udp-Max-Pl: Is PTAS best possible approx ?
Yes!
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Theorem

Udp-Max-Pl with unlimited supply is strongly NP-hard, even if
each consumer has at most 2 non-zero budgets.

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net



Introduction
Overview

Single-Minded Unlimited-Supply Pricing
Unit-Demand Pricing

Hardness Results
Approximation Algorithms

Approximation Algorithms
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Udp-Max-Npl, limit’d supply: const-approx,
APX-hard ? Yes!

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net



Introduction
Overview

Single-Minded Unlimited-Supply Pricing
Unit-Demand Pricing

Hardness Results
Approximation Algorithms

Theorem

Udp-Max-{Pl,Npl} with unit-supply can be solved in polynomial
time.

Theorem

Udp-Max-Npl with limited supply 2 or larger is APX-hard.

Theorem

There is a 2-approximation algorithm for Udp-Max-Npl with lim-
ited supply.
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Theorem

There is a 2-approximation algorithm for Udp-Max-Npl with lim-
ited supply.

Sketch of Proof:
Let r(p, a) be the revenue of price assignment p and corresponding
(optimal) allocation a (Maximum Weighted Bipartite b-Matching).

Given prices p let [p | p(e) = p′] be prices obtained by changing
price of e to p′. We prove that the following is a 2-approx algo:

LocalSearch: Initialize p arbitrarily and compute the
optimal allocation a. While there exists product e and
price p′ 6= p(e) such that

r(p, a) < r([p | p(e) = p
′], a′),

where a′ is the optimal allocation given prices
[p | p(e) = p′], set p(e) = p′.
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Summary (UDP):

Udp-Min-{Pl,Npl} is intractable (no const approx), even
with PL

Udp-Max-{Pl,Npl} is tractable (const approx), even with
NPL and limited supply
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APX-hardness of G -SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparse
problem instances. Hardness of approximation still holds if:

G has constant degree d

paths have constant lengths ≤ ℓ

at most a constant number B of paths per edge

only constant height valuations

Theorem

G -SUSP on sparse instances is APX-hard.
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We reduce a variant of MaxSat.

Max2Sat(3): clauses of length 2, every literal appears in at most 3
clauses

We need to design gadgets that imitate clauses in the SAT
instance.

We start out from the weight gadgets which will model literals.
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Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,
gives maximum profit 2 if p(Lj) ∈ {1, 2}.
Connect L1 and L2, if l1, l2 form a clause.
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Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,
gives maximum profit 2 if p(Lj) ∈ {1, 2}.
Connect L1 and L2, if l1, l2 form a clause.
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Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,
gives maximum profit 2 if p(Lj) ∈ {1, 2}.
Connect L1 and L2, if l1, l2 form a clause.
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Clause Gadgets

Literal gadget Lj for every occurrence of literal lj ,
gives maximum profit 2 if p(Lj) ∈ {1, 2}.
Connect L1 and L2, if l1, l2 form a clause.
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Lemma

Let C be a clause gadget with literal gadgets L1 and L2. Maxi-
mum profit obtainable from C is 25 and is reached if and only if
{p(L1), p(L2)} = {1, 2} or p(L1) = p(L2) = 2. C gives profit 24 if
p(L1) = p(L2) = 1.
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Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joined
together. Adding a sufficient number of dummies gives a cyclic
structure of exactly 6 literal gadgets.
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Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joined
together. Adding a sufficient number of dummies gives a cyclic
structure of exactly 6 literal gadgets.
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Dummies

Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joined
together. Adding a sufficient number of dummies gives a cyclic
structure of exactly 6 literal gadgets.
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Literal gadgets L(xj), L(x j) belonging to literals xj or x j are joined
together. Adding a sufficient number of dummies gives a cyclic
structure of exactly 6 literal gadgets.
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Prices p on this instances are SAT-feasible, if

p(L) ∈ {1, 2} for all literal gadgets L

p(L1(xj)) = p(L2(xj)) = p(L3(xj)) and

p(L1(x j)) = p(L2(x j)) = p(L3(x j)) for all xj .

Lemma

Any price assignment p can be transformed in polynomial time into
a SAT-feasible price assignment p∗ of no smaller profit.
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An O(ℓ2)-Approximation (SUSP)
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Define (smoothed) s-SUSP by changing the objective to

∑

S∈Λ(p)

∑

e∈S

p(e),

where Λ(p) = {S ∈ S | p(e) ≤ δ(S)∀ e ∈ S}.

We derive an O(ℓ)-approximation for s-SUSP.

1 For every e ∈ U compute the optimal price p∗(e) assuming all
other prices were 0.

2 Resolve existing conflicts.

Set S is conflicting, if

∃ e, f ∈ S : p∗(e) ≤ δ(S) < p∗(f ).

Patrick Briest, Piotr Krysta Pricing for Revenue Maximization in General Scenarios and in Net



Introduction
Overview

Single-Minded Unlimited-Supply Pricing
Unit-Demand Pricing

Hardness Results
Approximation Algorithms

Upper bounding technique

1 For every e ∈ U compute the optimal price p∗(e) assuming all
other prices were 0.

2 Our upper bound: Opt ≤
∑

e∈U p∗(e)
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Conflict graph for price assignment p∗:

α (e,S)

α (T)

α (e) profit of e on non−conflicting sets��

profit of e on conflicting set S

total profit on conflicting set T

Vertices represent products, directed hyperedges represent
conflicting sets. Profit out of non-conflicting sets is assigned to
vertices, conflicting profit to hyperedges.
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Conflicts are resolved by transforming the conflict graph:

Step 1: In order of increasing prices check for each product e if

∑

T∈In(e)

α(T ) >
1

2

∑

S∈Out(e)

α(e, S),

and remove e from all outgoing edges in this case.

Step 2: Let R = {e |Out(e) = ∅}, E = {S=̂(V , W ) |W ⊆ R}.
Edges in E carry half the profit of all edges in the graph. If
α(R) > α(E) set p(e) = 0 for all e ∈ R.

Step 3: Remove the remaining edges.
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We obtain a conflict graph for some non-conflicting price
assignment p.

Lemma

In the transformation the overall α-value decreases by at most a
factor O(ℓ).

Opt of SUSP is upper bounded by ℓ times the α-value of p∗’s
conflict graph, thus:

Theorem

The above algorithm computes an O(ℓ2)-approximation for SUSP.
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