Pricing for Revenue Maximization in General Scenarios and in Networks

Patrick Briest Piotr Krysta

Dept. of Computer Science University of Dortmund Germany

03-10-2006

Websites gather data about consumer preferences / budgets.

Computation of profit maximizing prices.

Different approaches taken to model markets. Here:

- Single-Minded Unlimited-Supply Pricing:
 - single-minded customers, each interested in a single set of products,
 - unlimited supply, i.e., no production constraints.
 - Customer buys if the sum of prices is below her budget.
- Unit-Demand Pricing:
 - unit-demand customers, each buy a single product in a set of products,
 - unlimited or limited supply,
 - Customer buys only products with prices below their budgets.

- Introduction
- Single-Minded Unlimited-Supply Pricing
 - Hardness Results
 - Approximation Algorithms
- Unit-Demand Pricing
 - Hardness Results
 - Approximation Algorithms

Single-Minded Unlimited-Supply Pricing

Single-Minded Unlimited-Supply Pricing (SUSP)

Given products \mathcal{U} and sets \mathcal{S} with values v(S) find prices p, such that

$$\sum_{S \,:\, \sum_{e \in S} p(e) \leq \nu(S)} \quad \sum_{e \in S} p(e) \quad \longrightarrow \mathsf{max}.$$

→ models pricing of direct connections in computer or transportation networks.

Pricing in Graphs(G-SUSP)

Given graph G=(V,E) and paths \mathcal{P} , assign profit-maximizing prices p to edges.

First investigated by *Guruswami et al.* (2005). Recent inapproximability result due to *Demaine et al.* (2006).

In general:

- $O(\log |\mathcal{U}| + \log |\mathcal{S}|)$ -approximation
- ullet inapproximable within $O(\log^\delta |\mathcal{U}|)$ for some $0<\delta<1$

With G being a line (Highway Problem):

- poly-time algo for integral valuations of constant size
- pseudopolynomial time algo for paths of constant length

Q: Is there a poly-time algorithm for the Highway Problem?

First investigated by *Guruswami et al.* (2005). Recent inapproximability result due to *Demaine et al.* (2006).

In general:

- $O(\log |\mathcal{U}| + \log |\mathcal{S}|)$ -approximation
- ullet inapproximable within $O(\log^\delta |\mathcal{U}|)$ for some $0<\delta<1$

With G being a line (Highway Problem):

- poly-time algo for integral valuations of constant size
- pseudopolynomial time algo for paths of constant length
- Q: Is there a poly-time algorithm for the Highway Problem? No!

Hardness Results

The Highway Problem

Theorem

The Highway Problem is NP-hard.

Sketch of Proof: PARTITION problem:

Given positive weights w_1, \ldots, w_n , does there exist $S \subset \{1, \ldots, n\}$, such that

$$\sum_{j\in S} w_j = \sum_{j\notin S} w_j ?$$

Design gadgets that capture the discrete nature of this problem.

Weight Gadgets

Maximum profit out of W_j is $2w_j$.

It is obtained iff $p(W_j) = p(e_1^j) + p(e_2^j)$ is set to w_j or $2w_j$.

Maximum profit $\frac{7}{2}\sum_{j=1}^n w_j$ is obtained iff there exists $S\subset\{1,\ldots,n\}$ with $\sum_{j\in S} w_j = \sum_{j\notin S} w_j$. \square

The sets in this instance are *nested*, i.e.,

- $S \subseteq T$, $T \subseteq S$, or
- $S \cap T = \emptyset$.

Every instance of SUSP with nested sets can be viewed as an instance of the Highway Problem.

Dynamic programming / scaling:

Theorem

SUSP with nested sets allows an FPTAS.

G-SUSP
Inapproximability of Sparse
Problem Instances

APX-hardness of G-SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparse problem instances. Hardness of approximation still holds if:

- G has constant degree d
- ullet paths have constant lengths $\leq \ell$
- at most a constant number B of paths per edge
- only constant height valuations

Theorem

G-SUSP on sparse instances is APX-hard.

Approximation Algorithms

Best ratio in the general case: $\log |\mathcal{U}| + \log |\mathcal{S}|$ Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry (2005)

Not approximable within $\log^{\delta} |\mathcal{U}|$ for some $0 < \delta < 1$. Demaine, Feige, Hajiaghayi, Salavatipour (2006)

Can we do better on sparse problem instances, i.e., can we obtain approximation ratios depending on

- ullet ℓ , the maximum cardinality of any set $S\in\mathcal{S}$
- B, the maximum number of sets containing some product $e \in \mathcal{U}$

rather than $|\mathcal{U}|$ and $|\mathcal{S}|$?

An
$$O(\log \ell + \log B)$$
-Approximation

Let $\delta(S) = v(S)/|S|$ be price per product of set S.

Nound all $\delta(S)$ to powers of 2. Let $S = S_0 \cup ... \cup S_t$ where $t = \lceil \log \ell^2 B \rceil - 1$. In S_i : $\delta(S) > \delta(T) \Rightarrow \delta(S)/\delta(T) \geq \ell^2 B$.

② In each S_i select non-intersecting sets with maximum δ -value and compute optimal prices.

Analysis:

- $Opt(S) \leq \sum_{i=1}^{t} Opt(S_i)$
- Let $S \in S_i$, $\mathcal{I}(S)$ intersecting sets with smaller δ -values:

$$v(S) \ge \sum_{T \in \mathcal{I}(S)} v(T)$$

• Let \mathcal{S}_i^* be non-intersecting sets with max. δ as in the algo. Then

$$Opt(S_i) \leq 2 \cdot Opt(S_i^*),$$

and, since we compute $\max_i Opt(S_i^*)$:

Theorem

The above algorithm has approximation ratio $O(\log \ell + \log B)$.

Upper bounding technique

We relate $Opt(S_i^*)$ to $Opt(S_i)$ by using as an upper bound

$$Opt(S_i) \leq \sum_{S \in S_i} v(S),$$

i.e., the sum of all valuations.

Using this upper bounding technique, no approximation ratio $o(\log B)$ can be achieved.

In many applications: $B >> \ell$.

Can we obtain ratios independent of B?

An $O(\ell^2)$ -Approximation

Define (smoothed) s-SUSP by changing the objective to

$$\sum_{S\in\Lambda(p)}\sum_{e\in S}p(e),$$

where $\Lambda(p) = \{ S \in \mathcal{S} \mid p(e) \leq \delta(S) \forall e \in S \}.$

We derive an $O(\ell)$ -approximation for s-SUSP.

- For every $e \in \mathcal{U}$ compute the optimal price $p^*(e)$ assuming all other prices were 0.
- Resolve existing conflicts.

Set *S* is *conflicting*, if

$$\exists e, f \in S : p^*(e) \leq \delta(S) < p^*(f).$$

Upper bounding technique

- **①** For every $e \in \mathcal{U}$ compute the optimal price $p^*(e)$ assuming all other prices were 0.
- ② Our upper bound: $Opt \leq \sum_{e \in \mathcal{U}} p^*(e)$

Summary (SUSP):

- Hardness results
 - NP-hardness of the Highway Problem
 - APX-hardness of G-SUSP for sparse instances
- Approximation Algorithms
 - $O(\log \ell + \log B)$ -approximation (\rightsquigarrow partitioning)
 - $O(\ell^2)$ -approximation (\leadsto conflict graph)

Unit-Demand Pricing

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c,e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}$, and rankings $r_c : \mathcal{U} \to \{1,\ldots,|\mathcal{U}|\}$.

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c,e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}$, and rankings $r_c : \mathcal{U} \to \{1,\ldots,|\mathcal{U}|\}$.

For prices $p: \mathcal{U} \to \mathbb{R}_0^+$:

 $\mathcal{A}(p)=\{c\in\mathcal{C}\,|\,\exists e\in\mathcal{U}\,:\,p(e)\leq b(c,e)\}=$ consumers affording to buy any product.

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c,e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}$, and rankings $r_c : \mathcal{U} \to \{1,\ldots,|\mathcal{U}|\}$.

For prices $p: \mathcal{U} \to \mathbb{R}_0^+$:

 $\mathcal{A}(p)=\{c\in\mathcal{C}\,|\,\exists e\in\mathcal{U}\,:\,p(e)\leq b(c,e)\}=$ consumers affording to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

•
$$\sum_{c \in \mathcal{A}(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$$
 (UDP-MIN-NPL)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c,e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}$, and rankings $r_c : \mathcal{U} \to \{1,\ldots,|\mathcal{U}|\}$.

For prices $p: \mathcal{U} \to \mathbb{R}_0^+$:

 $\mathcal{A}(p)=\{c\in\mathcal{C}\,|\,\exists e\in\mathcal{U}\,:\,p(e)\leq b(c,e)\}=$ consumers affording to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

- $\sum_{c \in \mathcal{A}(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MIN-NPL)
- $\sum_{c \in \mathcal{A}(p)} \max\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MAX-NPL)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c,e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}$, and rankings $r_c : \mathcal{U} \to \{1,\ldots,|\mathcal{U}|\}$.

For prices $p: \mathcal{U} \to \mathbb{R}_0^+$:

 $\mathcal{A}(p)=\{c\in\mathcal{C}\,|\,\exists e\in\mathcal{U}\,:\,p(e)\leq b(c,e)\}=$ consumers affording to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

- $\sum_{c \in A(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MIN-NPL)
- $\sum_{c \in \mathcal{A}(p)} \max\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MAX-NPL)
- $\sum_{c \in \mathcal{A}(p)} p(\operatorname{argmin}\{r_c(e) \mid e : p(e) \leq b(c, e)\})$ (UDP-RANK-NPL)

Given products \mathcal{U} and consumer samples \mathcal{C} consisting of budgets $b(c,e) \in \mathbb{R}_0^+ \ \forall c \in \mathcal{C}, e \in \mathcal{U}$, and rankings $r_c : \mathcal{U} \to \{1,\ldots,|\mathcal{U}|\}$.

For prices $p: \mathcal{U} \to \mathbb{R}_0^+$:

 $\mathcal{A}(p)=\{c\in\mathcal{C}\,|\,\exists e\in\mathcal{U}\,:\,p(e)\leq b(c,e)\}=$ consumers affording to buy any product.

In no price ladder scenario (NPL) we find prices p that maximize:

- $\sum_{c \in \mathcal{A}(p)} \min\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MIN-NPL)
- $\sum_{c \in \mathcal{A}(p)} \max\{p(e) \mid p(e) \le b(c, e)\}$ (UDP-MAX-NPL)
- $\sum_{c \in \mathcal{A}(p)} p(\operatorname{argmin}\{r_c(e) \mid e : p(e) \leq b(c, e)\})$ (UDP-RANK-NPL)

Given a price ladder constraint (PL), $p(e_1) \le \cdots \le p(e_{|\mathcal{U}|})$, UDP-{MIN,MAX,RANK}-PL asks for prices p satisfying PL.

- [1] Glynn, Rusmevichientong and Van Roy (2003)
- [2] Aggarwal, Feder, Motwani and Zhu (2004)

UDP-MIN- $\{PL, NPL\}$:

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx?

- [1] Glynn, Rusmevichientong and Van Roy (2003)
- [2] Aggarwal, Feder, Motwani and Zhu (2004)

UDP-MIN- $\{PL, NPL\}$:

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx? No!

- [1] Glynn, Rusmevichientong and Van Roy (2003)
- [2] Aggarwal, Feder, Motwani and Zhu (2004)

UDP-MIN- $\{PL, NPL\}$:

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ? No! UDP-MAX-PL: Is PTAS best possible approx ?

- [1] Glynn, Rusmevichientong and Van Roy (2003)
- [2] Aggarwal, Feder, Motwani and Zhu (2004)

UDP-MIN- $\{PL, NPL\}$:

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx ? No! UDP-MAX-PL: Is PTAS best possible approx ? Yes!

UDP introduced as non-parametric multi-product pricing in [1].

- [1] Glynn, Rusmevichientong and Van Roy (2003)
- [2] Aggarwal, Feder, Motwani and Zhu (2004)

$UDP-MIN-\{PL,NPL\}:$

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

$UDP-MAX-\{PL,NPL\}:$

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx? No!

 UDP-MAX-PL: Is PTAS best possible approx? Yes!

 UDP-MAX-NPL, limit'd supply: const-approx, APX-hard?

UDP introduced as non-parametric multi-product pricing in [1].

- [1] Glynn, Rusmevichientong and Van Roy (2003)
- [2] Aggarwal, Feder, Motwani and Zhu (2004)

$UDP-MIN-\{PL,NPL\}:$

- UDP-MIN-PL poly-time for uniform budgets consumers [1].
- UDP-MIN-NPL APX-hard, has $\mathcal{O}(\log |\mathcal{C}|)$ -approx [2].

UDP-MAX-{PL,NPL}:

- UDP-MAX-PL has a PTAS [2].
- UDP-MAX-PL, limited supply: 4-approx [2].
- UDP-MAX-NPL 16/15-hard, has 1.59-approx [2].
- Q: UDP-MIN-NPL: Is there a const approx? No! UDP-MAX-PL: Is PTAS best possible approx? Yes! UDP-MAX-NPL, limit'd supply: const-approx, APX-hard? Yes!

Hardness Results

UDP-MIN-NPL: Is there a const approx? No!

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME($n^{\mathcal{O}(\log \log n)}$).

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME($n^{\mathcal{O}(\log \log n)}$).

Sketch of Proof:

Let $\alpha(G) = \text{size of the maximum independent set in graph } G$.

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME($n^{\mathcal{O}(\log \log n)}$).

Sketch of Proof:

Let $\alpha(G) = \text{size of the maximum independent set in graph } G$.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Theorem

UDP-MIN-{PL,NPL} is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless NP \subseteq DTIME($n^{\mathcal{O}(\log \log n)}$).

Sketch of Proof:

Let $\alpha(G) = \text{size of the maximum independent set in graph } G$.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Given $G \in \mathcal{G}$, we reduce finding $\alpha(G)$ to UDP-MIN-PL.

Theorem

UDP-MIN- $\{PL, NPL\}$ is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless $NP \subseteq \mathsf{DTIME}(n^{\mathcal{O}(\log\log n)})$.

Sketch of Proof:

Let $\alpha(G) = \text{size of the maximum independent set in graph } G$.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Given $G \in \mathcal{G}$, we reduce finding $\alpha(G)$ to UDP-MIN-PL.

Assume a.c.: UDP-MIN-PL has $\mathcal{O}(\log^{\varepsilon-\delta} |\mathcal{C}|)$ -approx for some $\delta > 0$.

Theorem

UDP-MIN- $\{PL, NPL\}$ is not approximable within $\mathcal{O}(\log^{\varepsilon} |\mathcal{C}|)$ for some $\varepsilon > 0$, unless $NP \subseteq \mathsf{DTIME}(n^{\mathcal{O}(\log\log n)})$.

Sketch of Proof:

Let $\alpha(G) = \text{size of the maximum independent set in graph } G$.

Proposition [Alon, Feige, Wigderson, Zuckerman'95]

 $n \in \mathbb{N}$, $\mathcal{G} = \{G : G = (V, E) \text{ with max degree } \mathcal{O}(\log n), |V| = n\}$. There is $\varepsilon > 0$, s.t. $\mathcal{O}(\log^{\varepsilon} n)$ -approx to $\alpha(G)$ is NP-hard for $G \in \mathcal{G}$.

Given $G \in \mathcal{G}$, we reduce finding $\alpha(G)$ to UDP-MIN-PL.

Assume a.c.: UDP-MIN-PL has $\mathcal{O}(\log^{\varepsilon-\delta} |\mathcal{C}|)$ -approx for some $\delta > 0$.

We will show that this gives $\mathcal{O}(\log^{\varepsilon} n)$ -approx for $\alpha(G)$ in time $n^{\mathcal{O}(\log \log n)}$.

$$V = V_0 \cup \ldots \cup V_{\Delta}$$
: $(\Delta + 1)$ -vertex-coloring of G .

$$V=V_0\cup\ldots\cup V_\Delta\colon$$
 $(\Delta+1)$ -vertex-coloring of G .

Let
$$V_i = \{v_{ij} | j = 0, \dots, |V_i| - 1\}.$$

$$V=V_0\cup\ldots\cup V_\Delta$$
: $(\Delta+1)$ -vertex-coloring of G .

Let
$$V_i = \{v_{ij} | j = 0, \dots, |V_i| - 1\}.$$

$$V(v_{ij}) = \{v_{k\ell} \mid \{v_{ij}, v_{k\ell}\} \in E \text{ and } k < i\} = \text{vertices adjacent to } v_{ij} \text{ in color class with index } < i$$

 $G = (V, E) \in \mathcal{G}$ of max degree Δ , def instance of UDP-MIN-PL:

$$V = V_0 \cup \ldots \cup V_{\Delta}$$
: $(\Delta + 1)$ -vertex-coloring of G .

Let
$$V_i = \{v_{ij} | j = 0, \dots, |V_i| - 1\}.$$

 $V(v_{ij}) = \{v_{k\ell} \mid \{v_{ij}, v_{k\ell}\} \in E \text{ and } k < i\} = \text{vertices adjacent to } v_{ij} \text{ in color class with index } < i$

Products / **PL:** For every $v_{ij} \in V$ we have a product e_{ij} .

 $G = (V, E) \in \mathcal{G}$ of max degree Δ , def instance of UDP-MIN-PL:

$$V = V_0 \cup \ldots \cup V_{\Delta}$$
: $(\Delta + 1)$ -vertex-coloring of G .

Let
$$V_i = \{v_{ij} | j = 0, \dots, |V_i| - 1\}.$$

 $V(v_{ij}) = \{v_{k\ell} \mid \{v_{ij}, v_{k\ell}\} \in E \text{ and } k < i\} = \text{vertices adjacent to } v_{ij} \text{ in color class with index } < i$

Products / **PL:** For every $v_{ij} \in V$ we have a product e_{ij} .

Define PL: $p(e_{00}) \le p(e_{01}) \le \cdots \le p(e_{0,|V_0|-1}) \le p(e_{10}) \le \cdots$

 $G = (V, E) \in \mathcal{G}$ of max degree Δ , def instance of UDP-MIN-PL:

$$V = V_0 \cup \ldots \cup V_{\Delta}$$
: $(\Delta + 1)$ -vertex-coloring of G .

Let
$$V_i = \{v_{ij} | j = 0, \dots, |V_i| - 1\}.$$

 $V(v_{ij}) = \{v_{k\ell} \mid \{v_{ij}, v_{k\ell}\} \in E \text{ and } k < i\} = \text{vertices adjacent to } v_{ij} \text{ in color class with index } < i$

Products / **PL:** For every $v_{ij} \in V$ we have a product e_{ij} .

Define PL:
$$p(e_{00}) \le p(e_{01}) \le \cdots \le p(e_{0,|V_0|-1}) \le p(e_{10}) \le \cdots$$

Let
$$\mu = 4(\Delta + 1)$$
 and $\gamma = \mu^{-\Delta - 1}/n$.

 $G = (V, E) \in \mathcal{G}$ of max degree Δ , def instance of UDP-MIN-PL:

$$V = V_0 \cup \ldots \cup V_{\Delta}$$
: $(\Delta + 1)$ -vertex-coloring of G .

Let
$$V_i = \{v_{ij} | j = 0, \dots, |V_i| - 1\}.$$

 $V(v_{ij}) = \{v_{k\ell} \mid \{v_{ij}, v_{k\ell}\} \in E \text{ and } k < i\} = \text{vertices adjacent to } v_{ij} \text{ in color class with index } < i$

Products / **PL:** For every $v_{ij} \in V$ we have a product e_{ij} .

Define PL:
$$p(e_{00}) \le p(e_{01}) \le \cdots \le p(e_{0,|V_0|-1}) \le p(e_{10}) \le \cdots$$

Let
$$\mu = 4(\Delta + 1)$$
 and $\gamma = \mu^{-\Delta - 1}/n$.

For every product e_{ij} define $p_{ij} = \mu^{i-\Delta} + j\gamma$.

Illustration of the construction:

Consumers: For $v_{ij} \in V$ define a set

$$\mathcal{C}_{ij} = \{c_{ij}^t \mid t = 0, \dots, \mu^{\Delta - i} - 1\}$$
 of identical consumers

with budgets

$$b(c_{ij}^t,e_{ij})=p_{ij}$$
 and

$$b(c_{ij}^t, e_{k\ell}) = p_{k\ell}$$
 for all k,ℓ with $v_{k\ell} \in \mathcal{V}(v_{ij})$.

Consumers: For $v_{ij} \in V$ define a set

$$C_{ij} = \{c_{ii}^t \mid t = 0, \dots, \mu^{\Delta - i} - 1\}$$
 of identical consumers

with budgets

$$b(c_{ii}^t, e_{ij}) = p_{ij}$$
 and

$$b(c_{ij}^t,e_{k\ell})=p_{k\ell}$$
 for all k,ℓ with $v_{k\ell}\in\mathcal{V}(v_{ij})$.

In analogy to coloring $V=V_0\cup\ldots\cup V_\Delta$ denote consumers

$$C = C_0 \cup \ldots \cup C_{\Delta}$$
,

where
$$C_i = \bigcup_j C_{ij}$$
.

Illustration of the construction:

(large IS in G) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p: for $v_{ij} \in V'$ set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ij}) 's differ by $\geq \gamma$) \Rightarrow prices $p(\cdot)$ fulfill PL

(large IS in G) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p:

for $v_{ij} \in V'$ set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ii}) 's differ by $\geq \gamma$ \Rightarrow prices $p(\cdot)$ fulfill PL

Consider $v_{ij} \in V'$ and corresponding consumers \mathcal{C}_{ij} .

 $(\forall v_{k\ell} \in \mathcal{V}(v_{ij}) : v_{k\ell} \notin V')$

(large IS in G) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p:

for
$$v_{ij} \in V'$$
 set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ii}) 's differ by $\geq \gamma$ \Rightarrow prices $p(\cdot)$ fulfill PL

Consider $v_{ij} \in V'$ and corresponding consumers \mathcal{C}_{ij} .

$$(\forall v_{k\ell} \in \mathcal{V}(v_{ij}) : v_{k\ell} \notin V')$$

 \Rightarrow each consumer $c_{ij}^t \in \mathcal{C}_{ij}$ can afford product e_{ij} at price p_{ij}

(large IS in
$$G$$
) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p: for $v_{ij} \in V'$ set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ii}) 's differ by $\geq \gamma$ \Rightarrow prices $p(\cdot)$ fulfill PL

Consider $v_{ij} \in V'$ and corresponding consumers C_{ij} . $(\forall v_{k\ell} \in \mathcal{V}(v_{ii}) : v_{k\ell} \notin V')$

- \Rightarrow each consumer $c_{ij}^t \in \mathcal{C}_{ij}$ can afford product e_{ij} at price p_{ij}
- \Rightarrow prices of products $e_{k\ell}$ exceed thresholds $p_{k\ell}$ of each c^t_{ij}

(large IS in
$$G$$
) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p: for $v_{ij} \in V'$ set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ii}) 's differ by $\geq \gamma$ \Rightarrow prices $p(\cdot)$ fulfill PL

Consider $v_{ij} \in V'$ and corresponding consumers C_{ij} . $(\forall v_{k\ell} \in \mathcal{V}(v_{ii}) : v_{k\ell} \notin V')$

- \Rightarrow each consumer $c_{ij}^t \in \mathcal{C}_{ij}$ can afford product e_{ij} at price p_{ij}
- \Rightarrow prices of products $e_{k\ell}$ exceed thresholds $p_{k\ell}$ of each c^t_{ij}
- \Rightarrow e_{ij} is the product with smallest price that any c_{ii}^t can afford

(large IS in
$$G$$
) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p:

for
$$v_{ij} \in V'$$
 set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ii}) 's differ by $\geq \gamma$ \Rightarrow prices $p(\cdot)$ fulfill PL

Consider $v_{ij} \in V'$ and corresponding consumers \mathcal{C}_{ij} .

$$(\forall v_{k\ell} \in \mathcal{V}(v_{ij}) : v_{k\ell} \notin V')$$

- \Rightarrow each consumer $c_{ij}^t \in \mathcal{C}_{ij}$ can afford product e_{ij} at price p_{ij}
- \Rightarrow prices of products $e_{k\ell}$ exceed thresholds $p_{k\ell}$ of each c_{ii}^t
- \Rightarrow e_{ij} is the product with smallest price that any c^t_{ij} can afford

$$\Rightarrow$$
 revenue of consumers $C_{ij} \geq |C_{ij}| \cdot p_{ij} = \mu^{\Delta-i} \left(\mu^{i-\Delta} + j\gamma\right) \geq 1$

(large IS in G) \Rightarrow (high revenue in UDP)

For an IS V' of G, define prices p:

for
$$v_{ij} \in V'$$
 set $p(e_{ij}) = p_{ij}$, else set $p(e_{ij}) = p_{ij} + \gamma$. (p_{ii}) 's differ by $\geq \gamma$ \Rightarrow prices $p(\cdot)$ fulfill PL

Consider $v_{ij} \in V'$ and corresponding consumers \mathcal{C}_{ij} .

$$(\forall v_{k\ell} \in \mathcal{V}(v_{ij}) : v_{k\ell} \notin V')$$

- \Rightarrow each consumer $c_{ij}^t \in \mathcal{C}_{ij}$ can afford product e_{ij} at price p_{ij}
- \Rightarrow prices of products $e_{k\ell}$ exceed thresholds $p_{k\ell}$ of each c_{ii}^t
- \Rightarrow e_{ij} is the product with smallest price that any c_{ij}^t can afford
- \Rightarrow revenue of consumers $C_{ij} \geq |C_{ij}| \cdot p_{ij} = \mu^{\Delta-i} \left(\mu^{i-\Delta} + j\gamma\right) \geq 1$
- \Rightarrow prices p result in revenue $\geq |V'|$, so $opt_{UDP} \geq \alpha(G)$

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ij})$, $r(c_{ij}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ij})$, $r(c_{ij}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^{+} \stackrel{df}{=} \{c_{ij}^{t} \mid r(c_{ij}^{t}) = p_{ij}\}, \ \mathcal{C}^{-} = \mathcal{C} \setminus \mathcal{C}^{+}.$$

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ij})$, $r(c_{ij}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \, \text{Obs:} \, \, \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \, \, \text{or} \, \, \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ii})$, $r(c_{ii}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \text{ Obs: } \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \text{ or } \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ij})$, $r(c_{ij}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \, \text{Obs:} \, \, \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \, \, \text{or} \, \, \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

Obs:
$$r(\mathcal{C}^-) = \sum_{\mathcal{C}_{ij} \subseteq \mathcal{C}^-} r(\mathcal{C}_{ij}) \leq \frac{n}{2(\Delta+1)}$$

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ij})$, $r(c_{ij}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \, \text{Obs:} \, \, \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \, \, \text{or} \, \, \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

Obs:
$$r(\mathcal{C}^-) = \sum_{\mathcal{C}_{ij} \subseteq \mathcal{C}^-} r(\mathcal{C}_{ij}) \leq \frac{n}{2(\Delta+1)}$$

Obs: $\alpha(G) \ge n/(\Delta+1)$; easy to find prices resulting in revenue $n/(\Delta+1)$

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ij})$, $r(c_{ii}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \backslash \mathcal{C}^+. \, \text{ Obs: } \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \text{ or } \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

Obs:
$$r(\mathcal{C}^-) = \sum_{\mathcal{C}_{ii} \subseteq \mathcal{C}^-} r(\mathcal{C}_{ij}) \le \frac{n}{2(\Delta+1)}$$

Obs: $\alpha(G) \ge n/(\Delta+1)$; easy to find prices resulting in revenue $n/(\Delta+1)$

$$\Rightarrow$$
 wlog: $r(C) \ge \frac{n}{\Delta+1}$

Sketch of Proof: **Completeness:** $|V'| \ge \frac{1}{4} revenue(C)$, V'-IS:

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ii})$, $r(c_{ii}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \, \text{Obs:} \, \, \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \, \, \text{or} \, \, \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

Obs:
$$r(\mathcal{C}^-) = \sum_{\mathcal{C}_{ii} \subseteq \mathcal{C}^-} r(\mathcal{C}_{ij}) \le \frac{n}{2(\Delta+1)}$$

Obs: $\alpha(G) \ge n/(\Delta+1)$; easy to find prices resulting in revenue $n/(\Delta+1)$

$$\Rightarrow$$
 wlog: $r(\mathcal{C}) \ge \frac{n}{\Delta + 1} \Rightarrow r(\mathcal{C}^+) = r(\mathcal{C}) - r(\mathcal{C}^-) \ge (1/2)r(\mathcal{C})$

Sketch of Proof: **Completeness:** $|V'| \ge \frac{1}{4} revenue(C)$, V'-IS:

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ii})$, $r(c_{ii}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \text{ Obs: } \forall i,j \colon \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \text{ or } \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

Obs:
$$r(\mathcal{C}^-) = \sum_{\mathcal{C}_{ij} \subseteq \mathcal{C}^-} r(\mathcal{C}_{ij}) \le \frac{n}{2(\Delta+1)}$$

Obs: $\alpha(G) \ge n/(\Delta+1)$; easy to find prices resulting in revenue $n/(\Delta+1)$

$$\Rightarrow$$
 wlog: $r(\mathcal{C}) \geq \frac{n}{\Delta+1} \Rightarrow r(\mathcal{C}^+) = r(\mathcal{C}) - r(\mathcal{C}^-) \geq (1/2)r(\mathcal{C})$

$$\forall v_{ij} \in V': C_{ij} \subseteq C^+, r(C_{ij}) = |C_{ij}| \cdot p_{ij} = \mu^{\Delta-i} (\mu^{i-\Delta} + j\gamma) \le 2$$

Sketch of Proof: **Completeness:** $|V'| \ge \frac{1}{4} revenue(C)$, V'-IS:

(high revenue in UDP) \Rightarrow (large IS in G)

Let p()-prices found by approx algo, r(C), $r(C_{ii})$, $r(c_{ii}^t)$ -revenues.

W.l.o.g.: price of each product $e_{ij} \in \{p_{ij}, p_{ij} + \gamma\}$

$$\mathcal{C}^+ \stackrel{df}{=} \{c_{ij}^t \, | \, r(c_{ij}^t) = p_{ij}\}, \, \mathcal{C}^- = \mathcal{C} \setminus \mathcal{C}^+. \, \, \text{Obs:} \, \, \forall i,j: \, \mathcal{C}_{ij} \subseteq \mathcal{C}^+ \, \, \text{or} \, \, \mathcal{C}_{ij} \subseteq \mathcal{C}^-.$$

Goal: define $V' = \{v_{ij} \mid C_{ij} \subseteq C^+\}$, show V'-large IS.

Obs:
$$r(\mathcal{C}^-) = \sum_{\mathcal{C}_{ij} \subseteq \mathcal{C}^-} r(\mathcal{C}_{ij}) \leq \frac{n}{2(\Delta+1)}$$

Obs: $\alpha(G) \ge n/(\Delta+1)$; easy to find prices resulting in revenue $n/(\Delta+1)$

$$\Rightarrow$$
 wlog: $r(\mathcal{C}) \ge \frac{n}{\Delta+1} \Rightarrow r(\mathcal{C}^+) = r(\mathcal{C}) - r(\mathcal{C}^-) \ge (1/2)r(\mathcal{C})$

$$\forall v_{ij} \in V': C_{ij} \subseteq C^+, r(C_{ij}) = |C_{ij}| \cdot p_{ij} = \mu^{\Delta-i} (\mu^{i-\Delta} + j\gamma) \le 2$$

$$\Rightarrow |V'| = |\{v_{ij} \mid \mathcal{C}_{ij} \subseteq \mathcal{C}^+\}| \ge (1/2)r(\mathcal{C}^+) \ge (1/4)r(\mathcal{C})$$

Recall: $|\mathcal{C}| = \sharp$ consumers, and $\log |\mathcal{C}| \leq \log n\mu^{\Delta} = \mathcal{O}(\log^{1+\varepsilon'} n)$ for any $\varepsilon' > 0$.

Recall: $|\mathcal{C}| = \sharp$ consumers, and $\log |\mathcal{C}| \leq \log n\mu^{\Delta} = \mathcal{O}(\log^{1+\varepsilon'} n)$ for any $\varepsilon' > 0$.

 $r(\mathcal{C})$ is $\mathcal{O}(\log^{\varepsilon-\delta}|\mathcal{C}|)$ -approx to opt_{UDP}

Recall: $|\mathcal{C}| = \sharp$ consumers, and $\log |\mathcal{C}| \leq \log n\mu^{\Delta} = \mathcal{O}(\log^{1+\varepsilon'} n)$ for any $\varepsilon' > 0$.

$$r(\mathcal{C})$$
 is $\mathcal{O}(\log^{\varepsilon-\delta}|\mathcal{C}|)$ -approx to $\mathit{opt}_{\mathit{UDP}}$

$$\Rightarrow |V'| \geq \tfrac{1}{4} r(\mathcal{C}) \geq \tfrac{1}{\mathcal{O}(\log^{\varepsilon - \delta} |\mathcal{C}|)} opt_{UDP} \geq \tfrac{1}{\mathcal{O}(\log^{\varepsilon} n)} \alpha(\mathsf{G})$$

Recall: $|\mathcal{C}| = \sharp$ consumers, and $\log |\mathcal{C}| \leq \log n\mu^{\Delta} = \mathcal{O}(\log^{1+\varepsilon'} n)$ for any $\varepsilon' > 0$.

$$r(\mathcal{C})$$
 is $\mathcal{O}(\log^{\varepsilon-\delta}|\mathcal{C}|)$ -approx to $\mathit{opt}_{\mathit{UDP}}$

$$\Rightarrow |V'| \geq \tfrac{1}{4} r(\mathcal{C}) \geq \tfrac{1}{\mathcal{O}(\log^{\varepsilon - \delta} |\mathcal{C}|)} opt_{UDP} \geq \tfrac{1}{\mathcal{O}(\log^{\varepsilon} n)} \alpha(\mathsf{G})$$

By Proposition finding such an IS set is NP-hard.

The size of our $\mathrm{UDP}\text{-}\mathrm{MIN}\text{-}\mathrm{PL}$ instance is roughly

$$n \cdot (\log n)^{\log n} = n^{\mathcal{O}(\log \log n)}$$

and the running time of our approx algo is polynomial in this expression.

UDP-MAX-PL: Is PTAS best possible approx?

Theorem

UDP-MAX-PL with unlimited supply is strongly NP-hard, even if each consumer has at most 2 non-zero budgets.

Approximation Algorithms

UDP-MAX-NPL, limit'd supply: const-approx, APX-hard ? Yes!

Theorem

 $\operatorname{UDP-MAX-}\{\operatorname{PL},\operatorname{NPL}\}$ with unit-supply can be solved in polynomial time.

Theorem

UDP-MAX-NPL with limited supply 2 or larger is APX-hard.

Theorem

There is a 2-approximation algorithm for $\operatorname{UDP-MAX-NPL}$ with limited supply.

Theorem

There is a 2-approximation algorithm for $\mathrm{UDP\text{-}MAX\text{-}NPL}$ with limited supply.

Sketch of Proof:

Let r(p, a) be the revenue of price assignment p and corresponding (optimal) allocation a (Maximum Weighted Bipartite b-Matching).

Given prices p let $[p \mid p(e) = p']$ be prices obtained by changing price of e to p'. We prove that the following is a 2-approx algo:

LOCALSEARCH: Initialize p arbitrarily and compute the optimal allocation a. While there exists product e and price $p' \neq p(e)$ such that

$$r(p, a) < r([p | p(e) = p'], a'),$$

where a' is the optimal allocation given prices $[p \mid p(e) = p']$, set p(e) = p'.

Summary (UDP):

- UDP-MIN-{PL,NPL} is intractable (no const approx), even with PL
- UDP-MAX- $\{PL,NPL\}$ is tractable (const approx), even with NPL and limited supply

APX-hardness of G-SUSP due to Guruswami et al. (2005).

Applications in realistic network settings often lead to sparse problem instances. Hardness of approximation still holds if:

- G has constant degree d
- ullet paths have constant lengths $\leq \ell$
- at most a constant number B of paths per edge
- only constant height valuations

Theorem

G-SUSP on sparse instances is APX-hard.

We reduce a variant of MaxSat.

Max2Sat(3): clauses of length 2, every literal appears in at most 3 clauses

We need to design gadgets that imitate clauses in the SAT instance.

We start out from the weight gadgets which will model literals.

$p(\underline{\mathcal{L}}_l)$	p(<u></u>	prof	
1	1	4	
1	2	4	
2	2	4	

Literal gadget \mathcal{L}_j for every occurrence of literal I_j , gives maximum profit 2 if $p(\mathcal{L}_j) \in \{1, 2\}$. Connect \mathcal{L}_1 and \mathcal{L}_2 , if I_1 , I_2 form a clause.

$p(\underline{\mathcal{L}}_{1})$	$p(\underline{\mathcal{L}}_2)$	prof	P	
1	1	4	2	
1	2	4	3	
2	2	4	0	

Literal gadget \mathcal{L}_j for every occurrence of literal l_j , gives maximum profit 2 if $p(\mathcal{L}_j) \in \{1, 2\}$. Connect \mathcal{L}_1 and \mathcal{L}_2 , if l_1 , l_2 form a clause.

$p(\underline{\mathcal{L}}_l)$	$p(\underline{\mathcal{L}}_2)$	prof	P	S
1	1	4	2	6
1	2	4	3	6
2	2	4	0	7

Literal gadget \mathcal{L}_j for every occurrence of literal l_j , gives maximum profit 2 if $p(\mathcal{L}_j) \in \{1, 2\}$. Connect \mathcal{L}_1 and \mathcal{L}_2 , if l_1 , l_2 form a clause.

$p(\underline{\mathcal{L}}_l)$	$p(\underline{\mathcal{L}}_2)$	prof	P	S
1	1	4	2	6
1	2	4	3	6
2	2	4	0	7

Literal gadget \mathcal{L}_j for every occurrence of literal l_j , gives maximum profit 2 if $p(\mathcal{L}_j) \in \{1, 2\}$. Connect \mathcal{L}_1 and \mathcal{L}_2 , if l_1 , l_2 form a clause.

Lemma

Let $\mathcal C$ be a clause gadget with literal gadgets $\mathcal L_1$ and $\mathcal L_2$. Maximum profit obtainable from $\mathcal C$ is 25 and is reached if and only if $\{p(\mathcal L_1),p(\mathcal L_2)\}=\{1,2\}$ or $p(\mathcal L_1)=p(\mathcal L_2)=2$. $\mathcal C$ gives profit 24 if $p(\mathcal L_1)=p(\mathcal L_2)=1$.

Prices p on this instances are SAT-feasible, if

- $p(\mathcal{L}) \in \{1,2\}$ for all literal gadgets \mathcal{L}
- ullet $p(\mathcal{L}_1(x_j)) = p(\mathcal{L}_2(x_j)) = p(\mathcal{L}_3(x_j))$ and
- $p(\mathcal{L}_1(\overline{x}_j)) = p(\mathcal{L}_2(\overline{x}_j)) = p(\mathcal{L}_3(\overline{x}_j))$ for all x_j .

Lemma

Any price assignment p can be transformed in polynomial time into a SAT-feasible price assignment p^* of no smaller profit.

An $O(\ell^2)$ -Approximation (SUSP)

Define (smoothed) s-SUSP by changing the objective to

$$\sum_{S\in\Lambda(p)}\sum_{e\in S}p(e),$$

where $\Lambda(p) = \{ S \in \mathcal{S} \mid p(e) \leq \delta(S) \forall e \in S \}.$

We derive an $O(\ell)$ -approximation for s-SUSP.

- For every $e \in \mathcal{U}$ compute the optimal price $p^*(e)$ assuming all other prices were 0.
- Resolve existing conflicts.

Set *S* is *conflicting*, if

$$\exists e, f \in S : p^*(e) \leq \delta(S) < p^*(f).$$

Upper bounding technique

- For every $e \in \mathcal{U}$ compute the optimal price $p^*(e)$ assuming all other prices were 0.
- ② Our upper bound: $Opt \leq \sum_{e \in \mathcal{U}} p^*(e)$

Conflict graph for price assignment p^* :

Vertices represent products, directed hyperedges represent conflicting sets. Profit out of non-conflicting sets is assigned to vertices, conflicting profit to hyperedges.

Conflicts are resolved by transforming the conflict graph:

Step 1: In order of increasing prices check for each product e if

$$\sum_{T \in In(e)} \alpha(T) > \frac{1}{2} \sum_{S \in Out(e)} \alpha(e, S),$$

and remove e from all outgoing edges in this case.

Step 2: Let $R = \{e \mid Out(e) = \emptyset\}$, $\mathcal{E} = \{S = (V, W) \mid W \subseteq R\}$. Edges in \mathcal{E} carry half the profit of all edges in the graph. If $\alpha(R) > \alpha(\mathcal{E})$ set p(e) = 0 for all $e \in R$.

Step 3: Remove the remaining edges.

We obtain a conflict graph for some non-conflicting price assignment p.

Lemma

In the transformation the overall α -value decreases by at most a factor $O(\ell)$.

Opt of SUSP is upper bounded by ℓ times the α -value of p^* 's conflict graph, thus:

Theorem

The above algorithm computes an $O(\ell^2)$ -approximation for SUSP.