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General Problem — High Level

e INPUTS: Graph G = (V, E) with:
« cost of updating set of stores: SetC : V' x Powerset(V) — RT
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« For every source ¢ € P, a source frequency p;,
+ For every sink 7 € O, a sink frequency ¢,
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General Problem — High Level

e INPUTS: Graph G = (V, F) with:
« cost of updating set of stores: SetC : V' x Powerset(V) — RT
* Source Set P C V, Sink Set QO CV
« For every source ¢ € P, a source frequency p;,
+ For every sink 7 € O, a sink frequency ¢,
+ For every sink 7 € O, an interest set I;

e OUTPUTS:

« For every source ¢ € P, a Push set P,

+ For every sink j € 9, a Pull Set @);

+ Intersection requirement: i € [, = P;(Q; # 0.

« MINIMIZE: total cost of push-updates, queries and responses:

Zpi-SetC(i, P;) +qu-5etC(j, Q) +qu -RespC(5)

1€P JELQ JjELQ
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Routing Cost Models

Controlled Broadcast
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Related Work

e FeedTree: RSS via P2P Multicast, [Sandler et al., IPTPS’05]
e Web Caching applications

e Combs, Needles and Haystacks Paper, [Liu et al. SENSYS’'04]
e Data Gerrymandering, [Bagchi et al. T.A. TKDE]

e Minimum Cost 2-spanners: [Dodis & Khanna STOC’99] and
[Kortsarz & Peleg SICOMP’98]

e Multicommodity facility location, [Ravi & Sinha SODA’04]

e Classical Theory Problems

+ Facility Location
« Steiner Tree (including Group Steiner Tree)
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Our Results

e Multicast Model

+ Exact Tree Algorithm (Distributed)
« General Graphs
O(log n)-Approximation
NP-Completeness

e Unicast Model

+ Nonmetric Case — O(log n)-Approximation
+ ldentical Interest Sets / Metric Case — O(1)-Approximation
* NP-Completeness

e Controlled Broadcast Model

« A Polynomial LP solution
+ A Combinatorial solution



The Multicast Model — With Aggregation

e want the following

« A push subtree T for each source ¢

+« A pull subtree 77 for each sink j

+ Whenever j is interested in i (i € I;), T; N T} # 0.

+ Total cost of all trees (summing edge weights in each tree) is
minimized.

e For Trees:

« Basic idea: for each edge, compute minimum possible cost for
connectedness of trees.

x Claim: Global optimum consists of this solution at every edge.



The Multicast Model

e Indicator variable x,,,; says whether uv € T; (push tree 1)
® Yuvj indicates uv € T (pull tree j)

® 2,vi; indicates ¢ € I; and uwv € P(7; N T]f,j)

e arbitrary m,;; is average response frequency

e Minimize Objective function

S:szj CuvTyvi T+ Z QJZ CuvYuvj -+ S: y: mijz Cuv<cuvij

1€P wveFE 1€Q wveFE 1€P j€0Q uveFl




Multicast Model
An Exact (Distributed) Tree Algorithm

e GisatreeT = (V, F)

o MinC(7;NT%, j) is sum of edge weights on shortest path P(7}, j)
e For edge uv, let S, be largest subtree containing u but not v

e Note S,, =V \ Sy

e Substituting V' = 5, U Sy, we obtain two symmetric terms (eg.):

Z Cuv Zpﬂum + Z GYuvi + > Y MijZuvij

’U/UEE ’LGSuU ]ESUU ZESUU ]ES’UU

e Claim: Global optimum minimizes |...| independently!
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e Interest sets: {x, 2z} want {a,b, c}; y wants only a.

e Question: What is the minimum we can pay on edge vw?
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Bipartite Minimum Weight Vertex Cover

e Well Known: For bipartite G, = (AU B, E), MWVC € P (Max
flow). Find min cut R, to get MWVC C,,,, = (A\ R)U (BN R)

e Application: Set A = P, and B = Qu, U{x;; | (¢,5) € Xyw} for
response costs.

Lemma 1. For each arc e = vw, the MWVC weight of G, s the
minimum value paid for vw in any optimal solution.
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|ldentical Bipartite graph problem

Suppose many possible MWVCs (eg a +b+c=a+ z =y + 2).
How to break MWVC ties?
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e |dentical Bipartite graph problem

e Suppose many possible MWVCs (ega+b+c=a+ 2z =1y+ z2).
e How to break MWVC ties?

Defn: In bipartite G = (AU B, E), an MWVC is A-maximum if it has
maximum weight in A.
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A Consistent Tiebreaking Solution

Defn: In bipartite G = (AU B, E), an MWVC is A-maximum if it has
maximum weight in A.

A E B

Lemma 2. Let G = (AU B, E), let A1, Ay C A and let B, By C B.
If A1 U B1 and As U By are both A-maximum minimum weight vertex
covers, ... then Ay = Ay and By = Bs.

Unique solution per edge!
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Tree Algorithm — Structural Continuity

X
e Interest sets — recall: {x, z} want {a,b, c}; y wants only a.

e What about &G,,,7 Clearly different.

e Are push trees, pull trees and response paths connected?

Lemma 3. If we compute push-maximum MWVC for every edge, then
Push and Pull subtrees are connected.
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Lemma 4. Let uvw be two consecutive edges, let A be the set of push
nodes in G, and let B be the set of (non-push) nodes in G, .
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Lemma 4. Let uvw be two consecutive edges, let A be the set of push

nodes in G, and let B be the set of (non-push) nodes in G,,,. Let

e Ay, By be parts of push-maximum MWVC of G,, in A, B resp.,
and

o Ay, By be parts of push-maximum MWVC of G, in A, B resp.



Structural Continuity Solution
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Lemma 4. Let uvw be two consecutive edges, let A be the set of push

nodes in G, and let B be the set of (non-push) nodes in G,,,. Let

e Ay, By be parts of push-maximum MWVC of G,, in A, B resp.,
and

o Ay, By be parts of push-maximum MWVC of G, in A, B resp.
e then Al C AQ and Bl D) BQ.

Push/Pull subtrees, Response paths are connected!



Tree Algorithm

for each directed edge uv
construct the graph G,
find its canonical minimum cut C,,,
for all 2 € P,
if € C,, then include wv in T;
for all 7 € Quu
if 7 € Cy,, then include uv in T]f
for all (7,7) € Xy,
if z;; € C,, then include wv in P(1},7)



Distributed Implementation

e Global All-to-all exchange of

« sets of push nodes’ frequencies,
« pull nodes’ frequencies and interest sets.

e Locally, each edge solves both its directions independently.

e Use the solution to push and pull information
Notes:

e Cost of first phase small compared to third.

e For small sets of distinct values, communication improved.



Multicast Model — General Graph Approximation
algorithm

e Reduction from Min Steiner Tree; NP-hard to approximate within
96/95. Chlebik & Chlebikova SWAT’(02

Theorem 1. There is an expected O(logn)-approximation for the
Multicast problem in general graphs.



Multicast Model — General Graph Approximation
algorithm

e Reduction from Min Steiner Tree; NP-hard to approximate within
96/95. Chlebik & Chlebikova SWAT’(02

Theorem 1. There is an expected O(logn)-approximation for the
Multicast problem in general graphs.

We use the following:

Theorem 2 (Fakcharoenphol et al. STOC’03). The distribution over

tree metrics resulting from (their) algorithm O(log n)-probabilistically
approximates the metric d.



General Graph Approximation algorithm ctd.

e Bound Derivation

« Choose 1" randomly from distribution of metric-spanning trees.
« Project structures in G into T'. Obtain feasible solution for 7T'.
« OPT(T) < O(logn) - OPT(G).

e Approximation Algorithm

« Solve 1" exactly using our algorithm.
« Project structures in 1" into G. Obtain feasible solution for .

« ALG(G) < 2-OPT(T)



General Graph Approximation algorithm ctd.

e Bound Derivation

« Choose 1" randomly from distribution of metric-spanning trees.
« Project structures in G into T'. Obtain feasible solution for 7T'.
« OPT(T) < O(logn) - OPT(G).

e Approximation Algorithm

« Solve 1" exactly using our algorithm.
« Project structures in 1" into G. Obtain feasible solution for .
* ALG(G) <2-OPT(T) < O(logn) - OPT(G).
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e Multicast problem with(out) aggregation: easy reduction from Min
Steiner tree.

« Arbitrary node becomes low-freq source
+ Rest become high-freq Sink nodes
« Each interested in Source
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Multicast Model — Hardness

e Multicast problem with(out) aggregation: easy reduction from Min
Steiner tree.

« Arbitrary node becomes low-freq source
+ Rest become high-freq Sink nodes
« Each interested in Source

e Min Steiner Tree NP-hard to approximate within 96/95. Chlebik &
Chlebikova SWAT’02



The Unicast Model



The Unicast Model

e Given (non-)metric distances d,,, for every pair (u,v) € V x V.

o SetC(u,S) =", g du

e find push-sets P; and pull-sets (); that minimize total communication

cost.:
D i) dit+ Y g Y dig+ ) a;-RespC(j).

i€P  keEPR; JEQ  kEQ; JjeQ

e and satisfies: foralli € I;, P,NQ; # ()

e where

ResnC( 1) — SetC(7, @) (aggregation model)
espC(j) = Zielj MinC(P; N @Q,,7) otherwise.



Unicast Model with Aggregation
An Integer Program

Replace response cost by doubling sink frequencies
x;.. = 1 means ¢ pushes to £
Yr; = 1 means j pulls from k

ri;k = 1 means ¢ talks to j through &.

Minimize: sz' Z dikTik + Z dj Z dkjYk;

1€P keVvV 1€9 keV

subject to ¢ 7k < yr; . where zip, yrj, i € {0, 1}




Unicast Model with Aggregation
Nonmetric Case via Randomized Rounding

e Convert to LP: Use > 0 instead of € {0, 1}

e Solve and discard values < 1/n” and scale by n/(n — 1)

e Round values up to powers of 1/2, obtain (z, 7, 2)

e Fornode k and 0 < p < 2logn, define X, as ¢ such that z;;, > 1/2”.

e Vp, k: with probability min{1, (logn)/2P} add k to P; and @), for all
1€ Xy and j € Y.

Theorem 3. With high probability, solution is feasible, with cost
O(logn) . OPTLP.



Unicast Model with Aggregation
Nonmetric Case via Randomized Rounding — Proof

e Since 1 € Xlog(71)k and j € Yiog(7ij)k»
Prlk € P,NQ;] > min{1,7;,; log(n)}.

e Clearly Prlk € P;| <)
< min{1, 2z, logn}.

p:iEka(log n)/2P = 2x;; logn

® PI‘[PZ fa Qj — (Z)] = Hk(l — fijk logn) < e Zkﬁjklogn < 1/n2

e Define r.v. () as push cost for 7, and r.v. C;;. takes value d;; with
probability min{1,2%;; logn}.

o Chernoff-Hoeffding: w.h.p. >, Cir, < O(logn) - >, dirTir.

e Summing over all sources, sinks gives cost bound w.h.p.



Unicast Model with Aggregation
Uniform Interests, Metric Case — O(1)-Approximation

e Overview

+ Applies for Identical /Disjoint Interest Sets
« Uses same Integer Program.

« Deterministic Rounding with Filtering Technique Lin & Vitter
IPL'92, Shmoys et al STOC'97, Ravi & Sinha SODA’04



Unicast Model with Aggregation
Uniform Interest Sets in Metric Case — Intro

e Basic definitions

+ Optimal solution to the LP is (™, y*, r*).
+ LP gives cost lower bounds C; = ) |, d;,x, and C} => Akj Y,

3*%(1/2)
<




Unicast Model with Aggregation
Uniform Interest Sets in Metric Case — Intro

e Basic definitions

+ Optimal solution to the LP is (™, y*, r*).

+ LP gives cost lower bounds C; = ) |, d;,x, and C} => Akj Y,
+ For node u, » > 0, define B, (r) = {v : dy, <7}

« Let 1 < a < 3. Clearly B;(C}) € B;(aC?) € B;(8CY)

-——




Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

e Choose leaders: nodes with disjoint (3-balls, by nondecreasing cost.
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Uniform Interest Set / Metric — Algorithm

e Choose leaders: nodes with disjoint (3-balls, by nondecreasing cost.
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Uniform Interest Set / Metric — Algorithm

e Choose leaders: nodes with disjoint (3-balls, by nondecreasing cost.
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e Choose leaders: nodes with disjoint (3-balls, by nondecreasing cost.

e Define push sets: P, = {if U{{;}U{j:j €5 and C} < C;}
and pull sets: Q; = {jtU{l;} U{i:i€ S and C; < C}}.
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Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

e Choose leaders: nodes with disjoint (3-balls, by nondecreasing cost.

e Define push sets: P, = {if U{{;}U{j:j €5 and C} < C;}
and pull sets: Q; = {jtU{l;} U{i:i€ S and C; < C}}.
e Intersection guarantee: For each i € P and j € Q, P,NQ; # 0.
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Uniform Interest Set / Metric — Algorithm Proof

e Relative distance limits total push extent:
ForicP,a>1, » ) <l/a
k¢ B;(aC;)
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e Relative distance limits total push extent:
ForicP,a>1, » ) <l/a
k¢ B;(aC;)

e Derive Approximation Ratio.
« Recall: P, ={ifU{l;}U{j:j€e S and C; < Cy}
« Cost to ¢'s leader /;: 25C);
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Relative distance limits total push extent:
ForicP,a>1, » ) <l/a

k¢ B;(aCh)
Derive Approximation Ratio.
« Recall: P, ={ifU{l;}U{j:j€e S and C; < Cy}
« Cost to ¢'s leader /;: 25C;
+ Cost to (other) leaders S;:

C; > Zjesi (dij—@cé)zkegj(acg)rfjk
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Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

e Relative distance limits total push extent:
ForicP,a>1, » ) <l/a
k¢ B;(aC;)

e Derive Approximation Ratio.
« Recall: P, ={ifU{l;}U{j:j€e S and C; < Cy}
« Cost to ¢'s leader ¢;: 20C);
+ Cost to (other) leaders S;:

Ci > D ies, (dij — aC})Zkij(aC’;) Tk

> Ve di [1-8] [1-1]
(B— a)(a 1)2

JES; Z]

« o = 1.69 and 3 = 2.86 obtains 14.57-approximation.



Conclusions and Open Problems

Nonuniform Packet Lengths

Multicast:
+ General Graphs; Can O(logn) UB be improved to O(1)7

Nonmetric Unicast:

+ Derandomizing O(logn) algorithm.

+ Close gap O(1) LB vs O(logn) UB gap

Metric Unicast Case

« Improving the 14.57 bound for Uniform Interest sets.

+ Non-uniform interest sets (UB and/or Hardness)

Dynamic Graphs — Frequency, Position and Topology changes
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