Playing Push vs Pull: Models and Algorithms for Disseminating Dynamic Data in Networks.

R.C. Chakinala, A. Kumarasubramanian, Kofi A. Laing R. Manokaran, C. Pandu Rangan, **R. Rajaraman**

_

_

-

-

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

Using average source and sink frequencies.

Pull

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

Using average source and sink frequencies.

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

Pull

Using average source and sink frequencies.

Pull

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation
Push	4x	4x
Pull	6y	7y
Mixed	2x+2y	2x + 3y
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y

	Aggregation	No Aggregation	
Push	4x	4x	
Pull	6y	7y	
Mixed	2x+2y	2x + 3y	
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y	

Using average source and sink frequencies.

Mixed

	Aggregation	No Aggregation	
Push	4x	4x	
Pull	6y	7y	
Mixed	2x+2y	2x + 3y	
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y	

Using average source and sink frequencies.

Mixed

	Aggregation	No Aggregation	
Push	4x	4x	
Pull	6y	7y	
Mixed	2x+2y	2x + 3y	
Mixed is Best	2y < 2x < 4y	3y < 2x < 4y	

General Problem — **High Level**

- **INPUTS:** Graph G = (V, E) with:
 - * cost of updating set of stores: SetC : $V \times Powerset(V) \longrightarrow \mathbb{R}^+$
 - * Source Set $\mathcal{P} \subseteq V$, Sink Set $\mathcal{Q} \subseteq V$
 - * For every source $i \in \mathcal{P}$, a source frequency p_i
 - * For every sink $j \in Q$, a sink frequency q_j
 - * For every sink $j \in Q$, an **interest set** I_j

General Problem — **High Level**

- **INPUTS:** Graph G = (V, E) with:
 - * cost of updating set of stores: SetC : $V \times Powerset(V) \longrightarrow \mathbb{R}^+$
 - * Source Set $\mathcal{P} \subseteq V$, Sink Set $\mathcal{Q} \subseteq V$
 - * For every source $i \in \mathcal{P}$, a source frequency p_i
 - * For every sink $j \in Q$, a sink frequency q_j
 - * For every sink $j \in Q$, an **interest set** I_j

• OUTPUTS:

- * For every source $i \in \mathcal{P}$, a **Push set** P_i
- * For every sink $j \in Q$, a **Pull Set** Q_j
- * Intersection requirement: $i \in I_j \Rightarrow P_i \bigcap Q_j \neq \emptyset$.
- * MINIMIZE: **total cost** of push-updates, queries and responses:

$$\sum_{i \in \mathcal{P}} p_i \cdot \mathsf{SetC}(i, P_i) + \sum_{j \in \mathcal{Q}} q_j \cdot \mathsf{SetC}(j, Q_j) + \sum_{j \in \mathcal{Q}} q_j \cdot \mathsf{RespC}(j)$$

Routing Cost Models

Multicast

Cost	Example	Definition
Multicast	3	Steiner tree cost
Unicast	4	Sum of path costs
		(non-)metric Distance function
Broadcast Model	5	Breadth first tree cost to depth r

Routing Cost Models

Unicast

Cost	Example	Definition
Multicast	3	Steiner tree cost
Unicast	4	Sum of path costs
		(non-)metric Distance function
Broadcast Model	5	Breadth first tree cost to depth r

Routing Cost Models

Controlled Broadcast

Cost	Example	Definition
Multicast	3	Steiner tree cost
Unicast	4	Sum of path costs
		(non-)metric Distance function
Broadcast Model	5	Breadth first tree cost to depth r

Related Work

- FeedTree: RSS via P2P Multicast, [Sandler et al., IPTPS'05]
- Web Caching applications
- Combs, Needles and Haystacks Paper, [Liu et al. SENSYS'04]
- Data Gerrymandering, [Bagchi et al. T.A. TKDE]
- Minimum Cost 2-spanners: [Dodis & Khanna STOC'99] and [Kortsarz & Peleg SICOMP'98]
- Multicommodity facility location, [Ravi & Sinha SODA'04]
- Classical Theory Problems
 - * Facility Location
 - Steiner Tree (including Group Steiner Tree)

Our Results

- Multicast Model
 - * Exact Tree Algorithm (Distributed)
 - * General Graphs
 - $\star O(\log n)$ -Approximation
 - ★ NP-Completeness

Our Results

- Multicast Model
 - * Exact Tree Algorithm (Distributed)
 - * General Graphs
 - $\star O(\log n)$ -Approximation
 - ⋆ NP-Completeness
- Unicast Model
 - * Nonmetric Case $O(\log n)$ -Approximation
 - * Identical Interest Sets / Metric Case O(1)-Approximation
 - * NP-Completeness

Our Results

- Multicast Model
 - Exact Tree Algorithm (Distributed)
 - * General Graphs
 - $\star O(\log n)$ -Approximation
 - ⋆ NP-Completeness
- Unicast Model
 - * Nonmetric Case $O(\log n)$ -Approximation
 - * Identical Interest Sets / Metric Case O(1)-Approximation
 - * NP-Completeness
- Controlled Broadcast Model
 - * A Polynomial LP solution
 - * A Combinatorial solution

The Multicast Model – With Aggregation

want the following

- * A push subtree T_i for each source i
- * A pull subtree T'_{i} for each sink j
- * Whenever j is interested in $i \ (i \in I_j)$, $T_i \cap T'_j \neq \emptyset$.
- * Total cost of all trees (summing edge weights in each tree) is minimized.

• For **Trees**:

 Basic idea: for each edge, compute minimum possible cost for connectedness of trees.

* Claim: Global optimum consists of this solution at every edge.

The Multicast Model

- Indicator variable x_{uvi} says whether $uv \in T_i$ (push tree i)
- y_{uvj} indicates $uv \in T'_j$ (pull tree j)
- z_{uvij} indicates $i \in I_j$ and $uv \in P(T_i \cap T'_j, j)$
- arbitrary m_{ij} is average response frequency
- Minimize Objective function

$$\sum_{i \in \mathcal{P}} p_i \sum_{uv \in E} c_{uv} x_{uvi} + \sum_{j \in \mathcal{Q}} q_j \sum_{uv \in E} c_{uv} y_{uvj} + \sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{Q}} m_{ij} \sum_{uv \in E} c_{uv} z_{uvij}$$

Multicast Model An Exact (Distributed) Tree Algorithm

- G is a tree T = (V, E)
- $MinC(T_i \cap T'_j, j)$ is sum of edge weights on shortest path $P(T_i, j)$
- For edge uv, let S_{uv} be largest subtree containing u but not v
- Note $S_{vu} = V \setminus S_{uv}$
- Substituting $V = S_{uv} \cup S_{vu}$, we obtain two symmetric terms (eg.):

$$\sum_{uv \in E} c_{uv} \left[\sum_{i \in S_{uv}} p_i x_{uvi} + \sum_{j \in S_{vu}} q_j y_{uvj} + \sum_{i \in S_{uv}} \sum_{j \in S_{vu}} m_{ij} z_{uvij} \right]$$

• Claim: Global optimum minimizes [...] independently!

• Interest sets: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.

• Interest sets: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.

- Interest sets: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.
- Question: What is the minimum we can pay on edge vw?

- Interest sets: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.
- Question: What is the minimum we can pay on edge vw?

- Well Known: For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$
- Application: Set $A = P_{vw}$ and $B = Q_{vw}$

- Well Known: For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$
- Application: Set $A = P_{vw}$ and $B = Q_{vw} \cup \{x_{ij} \mid (i, j) \in X_{vw}\}$ for response costs.

- Well Known: For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$
- Application: Set $A = P_{vw}$ and $B = Q_{vw} \cup \{x_{ij} \mid (i, j) \in X_{vw}\}$ for response costs.

Lemma 1. For each arc e = vw, the MWVC weight of G_{vw} is the minimum value paid for vw in any optimal solution.

• Long chain, no sources or sinks.

- Long chain, no sources or sinks.
- Identical Bipartite graph problem

- Long chain, no sources or sinks.
- Identical Bipartite graph problem
- Suppose many possible MWVCs (eg a + b + c = a + z = y + z).
- How to break MWVC ties?

- Long chain, no sources or sinks.
- Identical Bipartite graph problem
- Suppose many possible MWVCs (eg a + b + c = a + z = y + z).
- How to break MWVC ties?

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

A Consistent Tiebreaking Solution

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

A Consistent Tiebreaking Solution

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

Lemma 2. Let $G = (A \cup B, E)$, let $A_1, A_2 \subseteq A$ and let $B_1, B_2 \subseteq B$. If $A_1 \cup B_1$ and $A_2 \cup B_2$ are both A-maximum minimum weight vertex covers, ...

A Consistent Tiebreaking Solution

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

Lemma 2. Let $G = (A \cup B, E)$, let $A_1, A_2 \subseteq A$ and let $B_1, B_2 \subseteq B$. If $A_1 \cup B_1$ and $A_2 \cup B_2$ are both A-maximum minimum weight vertex covers, ... then $A_1 = A_2$ and $B_1 = B_2$.

Unique solution per edge!

• Interest sets — recall: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.

- Interest sets recall: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.
- What about G_{uv} ? Clearly different.

- Interest sets recall: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.
- What about G_{uv} ? Clearly different.

- Interest sets recall: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.
- What about G_{uv} ? Clearly different.

- Interest sets recall: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.
- What about G_{uv} ? Clearly different.

• Are push trees, pull trees and response paths connected?

Lemma 3. If we compute push-maximum MWVC for every edge, then Push and Pull subtrees are connected.

- -

- -

Yes!!!

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv} , and let B be the set of (non-push) nodes in G_{vw} .

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv} , and let B be the set of (non-push) nodes in G_{vw} . Let • A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp., and

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv} , and let B be the set of (non-push) nodes in G_{vw} . Let • A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp.,

- A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp., and
- A_2, B_2 be parts of push-maximum MWVC of G_{uv} in A, B resp.

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv} , and let B be the set of (non-push) nodes in G_{vw} . Let

- A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp., and
- A_2, B_2 be parts of push-maximum MWVC of G_{uv} in A, B resp.
- then $A_1 \subseteq A_2$ and $B_1 \supseteq B_2$.

Push/Pull subtrees, Response paths are connected!

Tree Algorithm

for each directed edge uvconstruct the graph G_{uv} find its canonical minimum cut C_{uv} for all $i \in P_{uv}$ if $i \in C_{uv}$ then include uv in T_i for all $j \in Q_{vu}$ if $j \in C_{uv}$ then include uv in T'_j for all $(i, j) \in X_{uv}$ if $x_{ij} \in C_{uv}$ then include uv in $P(T_i, j)$

Distributed Implementation

• Global All-to-all exchange of

- sets of push nodes' frequencies,
- * pull nodes' frequencies and interest sets.
- Locally, each edge solves both its directions independently.
- Use the solution to push and pull information

Notes:

- Cost of first phase small compared to third.
- For small sets of distinct values, communication improved.

Multicast Model – General Graph Approximation algorithm

 Reduction from Min Steiner Tree; NP-hard to approximate within 96/95. Chlebik & Chlebikovà SWAT'02

Theorem 1. There is an expected $O(\log n)$ -approximation for the Multicast problem in general graphs.

Multicast Model – General Graph Approximation algorithm

 Reduction from Min Steiner Tree; NP-hard to approximate within 96/95. Chlebik & Chlebikovà SWAT'02

Theorem 1. There is an expected $O(\log n)$ -approximation for the Multicast problem in general graphs.

We use the following:

Theorem 2 (Fakcharoenphol et al. STOC'03). The distribution over tree metrics resulting from (their) algorithm $O(\log n)$ -probabilistically approximates the metric d.

General Graph Approximation algorithm ctd.

Bound Derivation

* Choose T randomly from distribution of metric-spanning trees. * Project structures in G into T. Obtain feasible solution for T. * $OPT(T) \le O(\log n) \cdot OPT(G)$.

- Approximation Algorithm
 - * Solve T exactly using our algorithm.
 - * Project structures in T into G. Obtain feasible solution for G.
 - * $ALG(G) \leq 2 \cdot OPT(T)$

General Graph Approximation algorithm ctd.

Bound Derivation

* Choose T randomly from distribution of metric-spanning trees. * Project structures in G into T. Obtain feasible solution for T. * $OPT(T) \le O(\log n) \cdot OPT(G)$.

- Approximation Algorithm
 - * Solve T exactly using our algorithm.
 - * Project structures in T into G. Obtain feasible solution for G.
 - * $ALG(G) \le 2 \cdot OPT(T) \le O(\log n) \cdot OPT(G).$

Multicast Model – Hardness

- Multicast problem with(out) aggregation: easy reduction from Min Steiner tree.
 - * Arbitrary node becomes low-freq source
 - * Rest become high-freq Sink nodes
 - * Each interested in Source

Multicast Model – Hardness

- Multicast problem with(out) aggregation: easy reduction from Min Steiner tree.
 - * Arbitrary node becomes low-freq source
 - * Rest become high-freq Sink nodes
 - * Each interested in Source

Multicast Model – Hardness

- Multicast problem with(out) aggregation: easy reduction from Min Steiner tree.
 - * Arbitrary node becomes low-freq source
 - * Rest become high-freq Sink nodes
 - * Each interested in Source
- Min Steiner Tree NP-hard to approximate within 96/95. Chlebik & Chlebikovà SWAT'02

The Unicast Model

The Unicast Model

- Given (non-)metric distances d_{uv} for every pair $(u, v) \in V \times V$.
- SetC $(u, S) = \sum_{k \in S} d_{uk}$
- find push-sets P_i and pull-sets Q_j that minimize total communication cost:

$$\sum_{i\in\mathcal{P}} p_i \sum_{k\in P_i} d_{ik} + \sum_{j\in\mathcal{Q}} q_j \sum_{k\in Q_j} d_{kj} + \sum_{j\in\mathcal{Q}} q_j \cdot \mathsf{RespC}(j),$$

- and satisfies: for all $i \in I_j$, $P_i \cap Q_j \neq \emptyset$
- where

$$\mathsf{RespC}(j) = \begin{cases} \mathsf{SetC}(j, Q_j) & (\mathsf{aggregation model}) \\ \sum_{i \in I_j} \mathsf{MinC}(P_i \cap Q_j, j) & \mathsf{otherwise.} \end{cases}$$

Unicast Model with Aggregation An Integer Program

- Replace response cost by doubling sink frequencies
- $x_{ik} = 1$ means i pushes to k
- $y_{kj} = 1$ means j pulls from k
- $r_{ijk} = 1$ means *i* talks to *j* through *k*.

Minimize:
$$\sum_{i \in \mathcal{P}} p_i \sum_{k \in V} d_{ik} x_{ik} + \sum_{j \in \mathcal{Q}} q_j \sum_{k \in V} d_{kj} y_{kj}$$

subject to
$$\begin{cases} r_{ijk} \leq x_{ik} \\ r_{ijk} \leq y_{kj} \\ \sum_k r_{ijk} \geq 1 \end{cases}$$
, where $x_{ik}, y_{kj}, r_{ijk} \in \{0, 1\}$.

Unicast Model with Aggregation Nonmetric Case via Randomized Rounding

- Convert to LP: Use ≥ 0 instead of $\in \{0, 1\}$
- Solve and discard values $\leq 1/n^2$ and scale by n/(n-1)
- Round values up to powers of 1/2, obtain $(\tilde{x}, \tilde{y}, \tilde{z})$
- For node k and $0 \le p < 2 \log n$, define X_{pk} as i such that $\tilde{x}_{ik} \ge 1/2^p$.
- $\forall p, k$: with probability $\min\{1, (\log n)/2^p\}$ add k to P_i and Q_j for all $i \in X_{pk}$ and $j \in Y_{pk}$.

Theorem 3. With high probability, solution is feasible, with cost $O(\log n) \cdot OPT_{LP}$.

Unicast Model with Aggregation Nonmetric Case via Randomized Rounding – Proof

- Since $i \in X_{\log(\tilde{r}_{ijk})k}$ and $j \in Y_{\log(\tilde{r}_{ijk})k}$, $\Pr[k \in P_i \cap Q_j] \ge \min\{1, \tilde{r}_{ijk}\log(n)\}.$
- Clearly $\Pr[k \in P_i] \leq \sum_{p:i \in X_{pk}} (\log n)/2^p = 2\tilde{x}_{ik} \log n$ $\leq \min\{1, 2\tilde{x}_{ik} \log n\}.$
- $\Pr[P_i \cap Q_j = \emptyset] = \prod_k (1 \tilde{r}_{ijk} \log n) \le e^{-\sum_k \tilde{r}_{ijk} \log n} \le 1/n^2.$
- Define r.v. C_i as push cost for i, and r.v. C_{ik} takes value d_{ik} with probability $\min\{1, 2\tilde{x}_{ik}\log n\}$.
- Chernoff-Hoeffding: w.h.p. $\sum_{k} C_{ik} \leq O(\log n) \cdot \sum_{k} d_{ik} \tilde{x}_{ik}$.
- Summing over all sources, sinks gives cost bound w.h.p.

Unicast Model with Aggregation Uniform Interests, Metric Case — O(1)-Approximation

• Overview

- * Applies for Identical/Disjoint Interest Sets
- * Uses same Integer Program.
- * Deterministic Rounding with Filtering Technique Lin & Vitter IPL'92, Shmoys et al STOC'97, Ravi & Sinha SODA'04

Unicast Model with Aggregation Uniform Interest Sets in Metric Case — Intro

Basic definitions

- * Optimal solution to the LP is (x^*, y^*, r^*) .
- * LP gives cost lower bounds $C_i = \sum_k d_{ik} x_{ik}^*$ and $C'_j = \sum_k d_{kj} y_{kj}^*$

Unicast Model with Aggregation Uniform Interest Sets in Metric Case — Intro

Basic definitions

- * Optimal solution to the LP is (x^*, y^*, r^*) .
- * LP gives cost lower bounds $C_i = \sum_k d_{ik} x_{ik}^*$ and $C'_j = \sum_k d_{kj} y_{kj}^*$
- * For node u, r > 0, define $B_u(r) = \{v : d_{uv} \le r\}$.
- * Let $1 < \alpha < \beta$. Clearly $B_j(C'_j) \subseteq B_j(\alpha C'_j) \subseteq B_j(\beta C'_j)$

- Choose leaders: nodes with disjoint β -balls, by nondecreasing cost.
- Define push sets: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\}$ and pull sets: $Q_j = \{j\} \cup \{\ell'_j\} \cup \{i : i \in S \text{ and } C_i < C'_j\}.$

- Choose leaders: nodes with disjoint β -balls, by nondecreasing cost.
- Define push sets: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\}$ and pull sets: $Q_j = \{j\} \cup \{\ell'_j\} \cup \{i : i \in S \text{ and } C_i < C'_j\}.$
- Intersection guarantee: For each $i \in \mathcal{P}$ and $j \in \mathcal{Q}$, $P_i \cap Q_j \neq \emptyset$.

• Relative distance limits total push extent:

For $i \in \mathcal{P}$, $\alpha > 1$, $\sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq 1/\alpha$

- Relative distance limits total push extent: For $i \in \mathcal{P}$, $\alpha > 1$, $\sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq 1/\alpha$
- Derive Approximation Ratio.
 - * Recall: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\}$
 - * Cost to *i*'s leader ℓ_i : $2\beta C_i$

- Relative distance limits total push extent: For $i \in \mathcal{P}$, $\alpha > 1$, $\sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq 1/\alpha$
- Derive Approximation Ratio.
 - * Recall: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \le C_i\}$
 - * Cost to *i*'s leader ℓ_i : $2\beta C_i$
 - * Cost to (other) leaders S_i :

$$C_i \geq \sum_{j \in S_i} (d_{ij} - \alpha C'_j) \sum_{k \in B_j(\alpha C'_j)} r^*_{ijk}$$

- Relative distance limits total push extent: For $i \in \mathcal{P}$, $\alpha > 1$, $\sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq 1/\alpha$
- Derive Approximation Ratio.
 - * Recall: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \le C_i\}$
 - * Cost to *i*'s leader ℓ_i : $2\beta C_i$
 - * Cost to (other) leaders S_i :

$$C_{i} \geq \sum_{j \in S_{i}} (d_{ij} - \alpha C'_{j}) \sum_{k \in B_{j}(\alpha C'_{j})} r^{*}_{ijk}$$

$$\geq \sum_{j \in S_{i}} d_{ij} \left[1 - \frac{\alpha}{\beta} \right] \left[1 - \frac{1}{\alpha} \right]$$

$$= \frac{(\beta - \alpha)(\alpha - 1)}{\alpha \beta} \sum_{j \in S_{i}} d_{ij}.$$

* $\alpha = 1.69$ and $\beta = 2.86$ obtains 14.57-approximation.

Conclusions and Open Problems

- Nonuniform Packet Lengths
- Multicast:
 - * General Graphs; Can $O(\log n)$ UB be improved to O(1)?
- Nonmetric Unicast:
 - * Derandomizing $O(\log n)$ algorithm.
 - * Close gap O(1) LB vs $O(\log n)$ UB gap
- Metric Unicast Case
 - * Improving the 14.57 bound for Uniform Interest sets.
 - * Non-uniform interest sets (UB and/or Hardness)
- Dynamic Graphs Frequency, Position and Topology changes

Thank You!

- Chakinala, Kumarasubramanian, and Manokaran: partial support generous gift from Northeastern University alumnus Madhav Anand.
- Rajaraman, partial support NSF grant IIS-0330201.
- Laing, partial support the Mellon Foundation and the Faculty Research Awards Committee of Tufts University, while visiting Northeastern University.