
Push and Pull

Source

Sink
Push and Pull

Source

Push

Sink
Push and Pull

Push

Source

Push

Sink
Push and Pull

Push

Source push Sink

Pull
Push and Pull

Push

Source → Sink

Pull

Source ← Sink

Push

query
Push and Pull

Push

Source

Sink

Push

Pull

Source

Sink

Push

Pull

query

response
Push and Pull

Push
- Source
- Sink
- push

Pull
- Source
- Store
- query
- response

Mixed
- Source
- Store
- response
- query

- Sink
A Simple Example

Using average source and sink frequencies.

Sources Sink

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
</tbody>
</table>

Mixed is Best

Mixed is Best

2y < 2x < 4y

3y < 2x < 4y
A Simple Example

Using average source and sink frequencies.

Push

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Push

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>$4x$</td>
<td>$4x$</td>
</tr>
<tr>
<td>Pull</td>
<td>$6y$</td>
<td>$7y$</td>
</tr>
<tr>
<td>Mixed</td>
<td>$2x + 2y$</td>
<td>$2x + 3y$</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>$2y < 2x < 4y$</td>
<td>$3y < 2x < 4y$</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Push

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>$4x$</td>
<td>$4x$</td>
</tr>
<tr>
<td>Pull</td>
<td>$6y$</td>
<td>$7y$</td>
</tr>
<tr>
<td>Mixed</td>
<td>$2x + 2y$</td>
<td>$2x + 3y$</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>$2y < 2x < 4y$</td>
<td>$3y < 2x < 4y$</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Pull

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Pull

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Pull

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Pull

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Pull

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>$4x$</td>
<td>$4x$</td>
</tr>
<tr>
<td>Pull</td>
<td>$6y$</td>
<td>$7y$</td>
</tr>
<tr>
<td>Mixed</td>
<td>$2x + 2y$</td>
<td>$2x + 3y$</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>$2y < 2x < 4y$</td>
<td>$3y < 2x < 4y$</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Pull

<table>
<thead>
<tr>
<th>Sources</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>$4x$</td>
<td>$4x$</td>
</tr>
<tr>
<td>Pull</td>
<td>$6y$</td>
<td>$7y$</td>
</tr>
<tr>
<td>Mixed</td>
<td>$2x + 2y$</td>
<td>$2x + 3y$</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>$2y < 2x < 4y$</td>
<td>$3y < 2x < 4y$</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Mixed

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example
Using average source and sink frequencies.

Mixed

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Mixed

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Mixed

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
A Simple Example

Using average source and sink frequencies.

Mixed

<table>
<thead>
<tr>
<th></th>
<th>Aggregation</th>
<th>No Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>Pull</td>
<td>6y</td>
<td>7y</td>
</tr>
<tr>
<td>Mixed</td>
<td>2x + 2y</td>
<td>2x + 3y</td>
</tr>
<tr>
<td>Mixed is Best</td>
<td>2y < 2x < 4y</td>
<td>3y < 2x < 4y</td>
</tr>
</tbody>
</table>
General Problem — High Level

INPUTS: Graph $G = (V, E)$ with:

- cost of updating set of stores: $\text{SetC} : V \times \text{Powerset}(V) \rightarrow \mathbb{R}^+$
- Source Set $\mathcal{P} \subseteq V$, Sink Set $\mathcal{Q} \subseteq V$
- For every source $i \in \mathcal{P}$, a source frequency p_i
- For every sink $j \in \mathcal{Q}$, a sink frequency q_j
- For every sink $j \in \mathcal{Q}$, an interest set I_j
General Problem — High Level

INPUTS: Graph $G = (V, E)$ with:

* cost of updating set of stores: $\text{SetC} : V \times \text{Powerset}(V) \rightarrow \mathbb{R}^+$
* **Source Set** $P \subseteq V$, **Sink Set** $Q \subseteq V$
* For every source $i \in P$, a **source frequency** p_i
* For every sink $j \in Q$, a **sink frequency** q_j
* For every sink $j \in Q$, an **interest set** I_j

OUTPUTS:

* For every source $i \in P$, a **Push set** P_i
* For every sink $j \in Q$, a **Pull Set** Q_j
* Intersection requirement: $i \in I_j \Rightarrow P_i \cap Q_j \neq \emptyset$.
* MINIMIZE: total cost of push-updates, queries and responses:

$$\sum_{i \in P} p_i \cdot \text{SetC}(i, P_i) + \sum_{j \in Q} q_j \cdot \text{SetC}(j, Q_j) + \sum_{j \in Q} q_j \cdot \text{RespC}(j)$$
Routing Cost Models

Multicast

<table>
<thead>
<tr>
<th>Cost</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>3</td>
<td>Steiner tree cost</td>
</tr>
<tr>
<td>Unicast</td>
<td>4</td>
<td>Sum of path costs (non-)metric Distance function</td>
</tr>
<tr>
<td>Broadcast Model</td>
<td>5</td>
<td>Breadth first tree cost to depth r</td>
</tr>
</tbody>
</table>
Routing Cost Models

Unicast

<table>
<thead>
<tr>
<th>Cost</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>3</td>
<td>Steiner tree cost</td>
</tr>
<tr>
<td>Unicast</td>
<td>4</td>
<td>Sum of path costs (non-)metric Distance function</td>
</tr>
<tr>
<td>Broadcast Model</td>
<td>5</td>
<td>Breadth first tree cost to depth r</td>
</tr>
</tbody>
</table>
Routing Cost Models

Controlled Broadcast

<table>
<thead>
<tr>
<th>Cost</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>3</td>
<td>Steiner tree cost</td>
</tr>
<tr>
<td>Unicast</td>
<td>4</td>
<td>Sum of path costs (non-)metric Distance function</td>
</tr>
<tr>
<td>Broadcast Model</td>
<td>5</td>
<td>Breadth first tree cost to depth r</td>
</tr>
</tbody>
</table>
Related Work

- FeedTree: RSS via P2P Multicast, [Sandler et al., IPTPS’05]
- Web Caching applications
- Combs, Needles and Haystacks Paper, [Liu et al. SENSYS’04]
- Data Gerrymandering, [Bagchi et al. T.A. TKDE]
- Minimum Cost 2-spanners: [Dodis & Khanna STOC’99] and [Kortsarz & Peleg SICOMP’98]
- Multicommodity facility location, [Ravi & Sinha SODA’04]
- Classical Theory Problems
 - Facility Location
 - Steiner Tree (including Group Steiner Tree)
Our Results

- Multicast Model
 - Exact Tree Algorithm (Distributed)
 - General Graphs
 - \(O(\log n) \)-Approximation
 - NP-Completeness
Our Results

- Multicast Model
 - Exact Tree Algorithm (Distributed)
 - General Graphs
 - $O(\log n)$-Approximation
 - NP-Completeness

- Unicast Model
 - Nonmetric Case — $O(\log n)$-Approximation
 - Identical Interest Sets / Metric Case — $O(1)$-Approximation
 - NP-Completeness
Our Results

- **Multicast Model**
 - Exact Tree Algorithm (Distributed)
 - General Graphs
 - $O(\log n)$-Approximation
 - NP-Completeness

- **Unicast Model**
 - Nonmetric Case — $O(\log n)$-Approximation
 - Identical Interest Sets / Metric Case — $O(1)$-Approximation
 - NP-Completeness

- **Controlled Broadcast Model**
 - A Polynomial LP solution
 - A Combinatorial solution
The Multicast Model – With Aggregation

• want the following
 * A push subtree T_i for each source i
 * A pull subtree T'_j for each sink j
 * Whenever j is interested in i ($i \in I_j$), $T_i \cap T'_j \neq \emptyset$.
 * Total cost of all trees (summing edge weights in each tree) is minimized.

• For Trees:
 * Basic idea: for each edge, compute minimum possible cost for connectedness of trees.
 * Claim: Global optimum consists of this solution at every edge.
The Multicast Model

- Indicator variable $x_{uv i}$ says whether $uv \in T_i$ (push tree i)

- $y_{uv j}$ indicates $uv \in T'_j$ (pull tree j)

- $z_{uv ij}$ indicates $i \in I_j$ and $uv \in P(T_i \cap T'_j, j)$

- arbitrary m_{ij} is average response frequency

- Minimize Objective function

$$\sum_{i \in P} p_i \sum_{uv \in E} c_{uv} x_{uv i} + \sum_{j \in Q} q_j \sum_{uv \in E} c_{uv} y_{uv j} + \sum_{i \in P} \sum_{j \in Q} m_{ij} \sum_{uv \in E} c_{uv} z_{uv ij}$$
Multicast Model

An Exact (Distributed) Tree Algorithm

- \(G \) is a tree \(T = (V, E) \)
- \(\text{MinC}(T_i \cap T'_j, j) \) is sum of edge weights on shortest path \(P(T_i, j) \)
- For edge \(uv \), let \(S_{uv} \) be largest subtree containing \(u \) but not \(v \)
- Note \(S_{vu} = V \setminus S_{uv} \)
- Substituting \(V = S_{uv} \cup S_{vu} \), we obtain two symmetric terms (eg.):

\[
\sum_{uv \in E} c_{uv} \left[\sum_{i \in S_{uv}} p_i x_{uvi} + \sum_{j \in S_{vu}} q_j y_{uvj} + \sum_{i \in S_{uv}} \sum_{j \in S_{vu}} m_{ij} z_{uvij} \right]
\]

- Claim: Global optimum minimizes \([\ldots]\) independently!
• Interest sets: \(\{x, z\} \) want \(\{a, b, c\} \); \(y \) wants only \(a \).
Interest sets: \(\{x, z\} \) want \(\{a, b, c\} \); \(y \) wants only \(a \).
Interest sets: \(\{x, z\} \) want \(\{a, b, c\} \); \(y \) wants only \(a \).

Question: What is the \textbf{minimum} we can pay on edge \(vw \)?
• Interest sets: $\{x, z\}$ want $\{a, b, c\}$; y wants only a.

• Question: What is the **minimum** we can pay on edge vw?
Bipartite Minimum Weight Vertex Cover
Bipartite Minimum Weight Vertex Cover

- **Well Known:** For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$
Bipartite Minimum Weight Vertex Cover

- **Well Known**: For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$
Bipartite Minimum Weight Vertex Cover

- **Well Known:** For bipartite $G_{vw} = (A \cup B, E)$, $\text{MWVC} \in \mathbb{P}$ (Max flow). Find min cut R, to get $\text{MWVC} = (A \setminus R) \cup (B \cap R)$
Bipartite Minimum Weight Vertex Cover

- **Well Known:** For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$
Bipartite Minimum Weight Vertex Cover

- **Well Known:** For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$

- **Application:** Set $A = P_{vw}$ and $B = Q_{vw}$
Bipartite Minimum Weight Vertex Cover

- **Well Known**: For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$

- **Application**: Set $A = P_{vw}$ and $B = Q_{vw} \cup \{x_{ij} \mid (i, j) \in X_{vw}\}$ for response costs.
Bipartite Minimum Weight Vertex Cover

- **Well Known:** For bipartite $G_{vw} = (A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{vw} = (A \setminus R) \cup (B \cap R)$

- **Application:** Set $A = P_{vw}$ and $B = Q_{vw} \cup \{x_{ij} \mid (i, j) \in X_{vw}\}$ for response costs.

Lemma 1. For each arc $e = vw$, the MWVC weight of G_{vw} is the **minimum** value paid for vw in any optimal solution.
• Long chain, no sources or sinks.
• Long chain, no sources or sinks.
• Identical Bipartite graph problem
- Long chain, no sources or sinks.
- Identical Bipartite graph problem
- Suppose many possible MWVCs (eg $a + b + c = a + z = y + z$).
- How to break MWVC ties?
• Long chain, no sources or sinks.
• Identical Bipartite graph problem
• Suppose many possible MWVCs (eg $a + b + c = a + z = y + z$).
• How to break MWVC ties?

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.
A Consistent Tiebreaking Solution

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.
A Consistent Tiebreaking Solution

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

Lemma 2. Let $G = (A \cup B, E)$, let $A_1, A_2 \subseteq A$ and let $B_1, B_2 \subseteq B$. If $A_1 \cup B_1$ and $A_2 \cup B_2$ are both A-maximum minimum weight vertex covers, ...
A Consistent Tiebreaking Solution

Defn: In bipartite $G = (A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

![Diagram showing bipartite graph with sets A and B, and vertex covers A_1, A_2, B_1, and B_2.]

Lemma 2. Let $G = (A \cup B, E)$, let $A_1, A_2 \subseteq A$ and let $B_1, B_2 \subseteq B$. If $A_1 \cup B_1$ and $A_2 \cup B_2$ are both A-maximum minimum weight vertex covers, ... then $A_1 = A_2$ and $B_1 = B_2$.

Unique solution per edge!
• Interest sets — recall: \(\{x, z\} \) want \(\{a, b, c\} \); \(y \) wants only \(a \).
- Interest sets — recall: \{x, z\} want \{a, b, c\}; y wants only a.
- What about G_{uv}? Clearly different.
• Interest sets — recall: \(\{x, z\} \) want \(\{a, b, c\} \); \(y \) wants only \(a \).

• What about \(G_{uv} \)? Clearly different.
• Interest sets — recall: \{x, z\} want \{a, b, c\}; y wants only a.

• What about G_{uv}? Clearly different.
Tree Algorithm — Structural Continuity

- Interest sets — recall: \(\{x, z\} \) want \(\{a, b, c\} \); \(y \) wants only \(a \).

- What about \(G_{uv} \)? Clearly different.

- Are push trees, pull trees and response paths connected?

Lemma 3. If we compute push-maximum MWVC for every edge, then Push and Pull subtrees are connected.
Structural Continuity Solution

Yes!!!
Structural Continuity Solution

Yes!!!
Structural Continuity Solution

Yes!!!
Structural Continuity Solution

Yes!!!

Diagram:

- Nodes: a, b, c, y, z, x
- Connections: a to y, b to z, c to x

Graph representation:
Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv}, and let B be the set of (non-push) nodes in G_{vw}.
Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv}, and let B be the set of (non-push) nodes in G_{vw}. Let

- A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp., and
Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv}, and let B be the set of (non-push) nodes in G_{vw}. Let

- A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp., and

- A_2, B_2 be parts of push-maximum MWVC of G_{uw} in A, B resp.
Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in G_{uv}, and let B be the set of (non-push) nodes in G_{vw}. Let
- A_1, B_1 be parts of push-maximum MWVC of G_{vw} in A, B resp., and
- A_2, B_2 be parts of push-maximum MWVC of G_{uw} in A, B resp.
- then $A_1 \subseteq A_2$ and $B_1 \supseteq B_2$.

Push/Pull subtrees, Response paths are connected!
Tree Algorithm

for each directed edge uv
 construct the graph G_{uv}
 find its canonical minimum cut C_{uv}
 for all $i \in P_{uv}$
 if $i \in C_{uv}$ then include uv in T_i
 for all $j \in Q_{vu}$
 if $j \in C_{uv}$ then include uv in T'_j
 for all $(i, j) \in X_{uv}$
 if $x_{ij} \in C_{uv}$ then include uv in $P(T_i, j)$
Distributed Implementation

- Global **All-to-all** exchange of
 - sets of push nodes’ frequencies,
 - pull nodes’ frequencies and interest sets.

- Locally, each edge solves both its directions **independently**.

- Use the solution to push and pull information

Notes:

- Cost of first phase small compared to third.

- For small sets of distinct values, communication improved.
Multicast Model – General Graph Approximation algorithm

- Reduction from Min Steiner Tree; NP-hard to approximate within 96/95. Chlebík & Chlebíková SWAT’02

Theorem 1. There is an expected $O(\log n)$-approximation for the Multicast problem in general graphs.
Multicast Model – General Graph Approximation algorithm

- Reduction from Min Steiner Tree; NP-hard to approximate within 96/95. Chlebík & Chlebíková SWAT’02

Theorem 1. There is an expected $O(\log n)$-approximation for the Multicast problem in general graphs.

We use the following:

Theorem 2 (Fakcharoenphol et al. STOC’03). The distribution over tree metrics resulting from (their) algorithm $O(\log n)$-probabilistically approximates the metric d.
General Graph Approximation algorithm ctd.

- **Bound Derivation**
 - Choose T randomly from distribution of metric-spanning trees.
 - Project structures in G into T. Obtain feasible solution for T.
 - $OPT(T) \leq O(\log n) \cdot OPT(G)$.

- **Approximation Algorithm**
 - Solve T exactly using our algorithm.
 - Project structures in T into G. Obtain feasible solution for G.
 - $ALG(G) \leq 2 \cdot OPT(T)$
General Graph Approximation algorithm ctd.

- **Bound Derivation**

 - Choose T randomly from distribution of metric-spanning trees.
 - Project structures in G into T. Obtain feasible solution for T.
 - $OPT(T) \leq O(\log n) \cdot OPT(G)$.

- **Approximation Algorithm**

 - Solve T exactly using our algorithm.
 - Project structures in T into G. Obtain feasible solution for G.
 - $ALG(G) \leq 2 \cdot OPT(T) \leq O(\log n) \cdot OPT(G)$.
Multicast Model – Hardness

- Multicast problem with(out) aggregation: easy reduction from **Min Steiner tree**.
 - Arbitrary node becomes low-freq source
 - Rest become high-freq Sink nodes
 - Each interested in Source
Multicast Model – Hardness

- Multicast problem with(out) aggregation: easy reduction from **Min Steiner tree**.
 - Arbitrary node becomes low-freq source
 - Rest become high-freq Sink nodes
 - Each interested in Source
Multicast Model – Hardness

- Multicast problem with(out) aggregation: easy reduction from **Min Steiner tree**.
 - Arbitrary node becomes low-freq source
 - Rest become high-freq Sink nodes
 - Each interested in Source

- Min Steiner Tree NP-hard to **approximate** within 96/95. **Chlebík & Chlebíková SWAT’02**
The Unicast Model
The Unicast Model

- Given (non-)metric distances d_{uv} for every pair $(u, v) \in V \times V$.
- $\text{SetC}(u, S) = \sum_{k \in S} d_{uk}$
- find push-sets P_i and pull-sets Q_j that minimize total communication cost:
 \[
 \sum_{i \in P} p_i \sum_{k \in P_i} d_{ik} + \sum_{j \in Q} q_j \sum_{k \in Q_j} d_{kj} + \sum_{j \in Q} q_j \cdot \text{RespC}(j),
 \]
- and satisfies: for all $i \in I_j$, $P_i \cap Q_j \neq \emptyset$
- where
 \[
 \text{RespC}(j) = \begin{cases}
 \text{SetC}(j, Q_j) & \text{ (aggregation model)} \\
 \sum_{i \in I_j} \text{MinC}(P_i \cap Q_j, j) & \text{otherwise.}
 \end{cases}
 \]
Unicast Model with Aggregation
An Integer Program

- Replace response cost by doubling sink frequencies
- $x_{ik} = 1$ means i pushes to k
- $y_{kj} = 1$ means j pulls from k
- $r_{ijk} = 1$ means i talks to j through k.

Minimize: $\sum_{i \in P} p_i \sum_{k \in V} d_{ik} x_{ik} + \sum_{j \in Q} q_j \sum_{k \in V} d_{kj} y_{kj}$

subject to $\begin{cases} r_{ijk} \leq x_{ik} \\ r_{ijk} \leq y_{kj} \\ \sum_k r_{ijk} \geq 1 \end{cases}$, where $x_{ik}, y_{kj}, r_{ijk} \in \{0, 1\}$.
Unicast Model with Aggregation
Nonmetric Case via Randomized Rounding

- Convert to LP: Use ≥ 0 instead of $\in \{0, 1\}$

- Solve and discard values $\leq 1/n^2$ and scale by $n/(n - 1)$

- Round values up to powers of $1/2$, obtain $(\tilde{x}, \tilde{y}, \tilde{z})$

- For node k and $0 \leq p < 2 \log n$, define X_{pk} as i such that $\tilde{x}_{ik} \geq 1/2^p$.

- $\forall p, k$: with probability $\min\{1, (\log n)/2^p\}$ add k to P_i and Q_j for all $i \in X_{pk}$ and $j \in Y_{pk}$.

Theorem 3. With high probability, solution is feasible, with cost $O(\log n) \cdot OPT_{LP}$.
Unicast Model with Aggregation
Nonmetric Case via Randomized Rounding – Proof

• Since \(i \in X_{\log(\tilde{r}_{ijk})} \) and \(j \in Y_{\log(\tilde{r}_{ijk})} \),
 \(\Pr[k \in P_i \cap Q_j] \geq \min\{1, \tilde{r}_{ijk} \log(n)\} \).

• Clearly \(\Pr[k \in P_i] \leq \sum_{p:i \in X_p} (\log n)/2^p = 2\tilde{x}_{ik} \log n \)
 \leq \min\{1, 2\tilde{x}_{ik} \log n\}.

• \(\Pr[P_i \cap Q_j = \emptyset] = \prod_k (1 - \tilde{r}_{ijk} \log n) \leq e^{-\sum_k \tilde{r}_{ijk} \log n} \leq 1/n^2. \)

• Define r.v. \(C_i \) as push cost for \(i \), and r.v. \(C_{ik} \) takes value \(d_{ik} \) with
 probability \(\min\{1, 2\tilde{x}_{ik} \log n\} \).

• Chernoff-Hoeffding: w.h.p. \(\sum_k C_{ik} \leq O(\log n) \cdot \sum_k d_{ik} \tilde{x}_{ik}. \)

• Summing over all sources, sinks gives cost bound w.h.p.
Unicast Model with Aggregation
Uniform Interests, Metric Case — $O(1)$-Approximation

• Overview
 * Applies for Identical/Disjoint Interest Sets
 * Uses same Integer Program.
 * Deterministic Rounding with Filtering Technique Lin & Vitter IPL’92, Shmoys et al STOC’97, Ravi & Sinha SODA’04
Unicast Model with Aggregation

Uniform Interest Sets in Metric Case — Intro

- **Basic definitions**
 - Optimal solution to the LP is \((x^*, y^*, r^*)\).
 - LP gives cost lower bounds
 \[C_i = \sum_k d_{ik} x_{ik}^* \text{ and } C_j' = \sum_k d_{kj} y_{kj}^* \]

![Diagram](image-url)
Basic definitions

- Optimal solution to the LP is \((x^*, y^*, r^*)\).
- LP gives cost lower bounds \(C_i = \sum_k d_{ik} x_{ik}^*\) and \(C'_j = \sum_k d_{kj} y_{kj}^*\).
- For node \(u\), \(r > 0\), define \(B_u(r) = \{v : d_{uv} \leq r\}\).
- Let \(1 < \alpha < \beta\). Clearly \(B_j(C'_j) \subseteq B_j(\alpha C'_j) \subseteq B_j(\beta C'_j)\).
Unicast Model with Aggregation

Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Define push sets: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\}$
and pull sets: $Q_j = \{j\} \cup \{\ell'_j\} \cup \{i : i \in S \text{ and } C_i < C'_j\}$.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

- Define push sets: $P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C_j' \leq C_i\}$
 and pull sets: $Q_j = \{j\} \cup \{\ell'_j\} \cup \{i : i \in S \text{ and } C_i < C_j'\}$.

- Intersection guarantee: For each $i \in P$ and $j \in Q$, $P_i \cap Q_j \neq \emptyset$.
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

- Relative distance limits total push extent:
 For $i \in \mathcal{P}$, $\alpha > 1$, \[\sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq \frac{1}{\alpha} \]
Unicast Model with Aggregation

Uniform Interest Set / Metric — Algorithm Proof

- Relative distance limits total push extent:

 For \(i \in \mathcal{P}, \alpha > 1, \sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq 1/\alpha \)

- Derive Approximation Ratio.

 * Recall: \(P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\} \)

 * Cost to \(i \)'s leader \(\ell_i \): \(2\beta C_i \)
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

• Relative distance limits total push extent:
 For \(i \in \mathcal{P}, \alpha > 1, \sum_{k \notin B_i(\alpha C_i)} x_{ik}^* \leq 1/\alpha \)

• Derive Approximation Ratio.
 * Recall: \(P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\} \)
 * Cost to \(i \)'s leader \(\ell_i \): \(2\beta C_i \)
 * Cost to (other) leaders \(S_i \):
 \[
 C_i \geq \sum_{j \in S_i} (d_{ij} - \alpha C'_j) \sum_{k \in B_j(\alpha C'_j)} r_{ijk}^*
 \]
Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

• Relative distance limits total push extent:
 For \(i \in \mathcal{P}, \alpha > 1, \sum_{k \notin B_i(\alpha C_i)} x^*_{ik} \leq 1/\alpha \)

• Derive Approximation Ratio.
 * Recall: \(P_i = \{i\} \cup \{\ell_i\} \cup \{j : j \in S' \text{ and } C'_j \leq C_i\} \)
 * Cost to \(i \)'s leader \(\ell_i \): \(2\beta C_i \)
 * Cost to (other) leaders \(S_i \):

\[
C_i \geq \sum_{j \in S_i} (d_{ij} - \alpha C'_j) \sum_{k \in B_j(\alpha C'_j)} r^*_{ijk} \\
\geq \sum_{j \in S_i} d_{ij} \left[1 - \frac{\alpha}{\beta} \right] \left[1 - \frac{1}{\alpha} \right] \\
= \frac{(\beta - \alpha)(\alpha - 1)}{\alpha \beta} \sum_{j \in S_i} d_{ij}.
\]

* \(\alpha = 1.69 \) and \(\beta = 2.86 \) obtains 14.57-approximation.
Conclusions and Open Problems

- Nonuniform Packet Lengths

- Multicast:
 - General Graphs; Can $O(\log n)$ UB be improved to $O(1)$?

- Nonmetric Unicast:
 - Derandomizing $O(\log n)$ algorithm.
 - Close gap $O(1)$ LB vs $O(\log n)$ UB gap

- Metric Unicast Case
 - Improving the 14.57 bound for Uniform Interest sets.
 - Non-uniform interest sets (UB and/or Hardness)

- Dynamic Graphs — Frequency, Position and Topology changes
Thank You!

- Chakinala, Kumarasubramanian, and Manokaran: partial support — generous gift from Northeastern University alumnus Madhav Anand.

- Rajaraman, partial support — NSF grant IIS-0330201.

- Laing, partial support — the Mellon Foundation and the Faculty Research Awards Committee of Tufts University, while visiting Northeastern University.