
1

Playing Push vs Pull: Models and Algorithms for
Disseminating Dynamic Data in Networks.

R.C. Chakinala, A. Kumarasubramanian, Kofi A. Laing

R. Manokaran, C. Pandu Rangan, R. Rajaraman

2

Push and Pull

Source Sink

2

Push and Pull

Source Sink

Push

2

Push and Pull

Source Sink

Push

push

2

Push and Pull

Source Sink

Push

push

Pull

2

Push and Pull

Source Sink

Push

push

Pull

query

2

Push and Pull

Source Sink

Push

push

Pull

query

response

2

Push and Pull

Source Sink

Push

push

Pull

query

response

Mixed

Store

2

Push and Pull

Source Sink

Push

push

Pull

query

response

Mixed

Store

2

Push and Pull

Source Sink

Push

push

Pull

query

response

Mixed

Store

2

Push and Pull

Source Sink

Push

push

Pull

query

response

Mixed

Store

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Push

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Push

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Push

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Pull

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Pull

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Pull

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Pull

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Pull

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Pull

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Mixed

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Mixed

Store

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Mixed

Store

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Mixed

Store

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

3

A Simple Example
Using average source and sink frequencies.

x

x

y

SinkSources

Mixed

Store

Aggregation No Aggregation

Push 4x 4x

Pull 6y 7y

Mixed 2x + 2y 2x + 3y

Mixed is Best 2y < 2x < 4y 3y < 2x < 4y

4

General Problem — High Level

• INPUTS: Graph G = (V,E) with:

∗ cost of updating set of stores: SetC : V × Powerset(V) −→ R+

∗ Source Set P ⊆ V , Sink Set Q ⊆ V

∗ For every source i ∈ P, a source frequency pi

∗ For every sink j ∈ Q, a sink frequency qj

∗ For every sink j ∈ Q, an interest set Ij

4

General Problem — High Level

• INPUTS: Graph G = (V,E) with:

∗ cost of updating set of stores: SetC : V × Powerset(V) −→ R+

∗ Source Set P ⊆ V , Sink Set Q ⊆ V

∗ For every source i ∈ P, a source frequency pi

∗ For every sink j ∈ Q, a sink frequency qj

∗ For every sink j ∈ Q, an interest set Ij

• OUTPUTS:

∗ For every source i ∈ P, a Push set Pi

∗ For every sink j ∈ Q, a Pull Set Qj

∗ Intersection requirement: i ∈ Ij ⇒ Pi

⋂
Qj 6= ∅.

∗ MINIMIZE: total cost of push-updates, queries and responses:∑
i∈P

pi·SetC(i, Pi)+
∑
j∈Q

qj ·SetC(j, Qj)+
∑
j∈Q

qj ·RespC(j)

5

Routing Cost Models

Multicast

Cost Example Definition

Multicast 3 Steiner tree cost

Unicast 4 Sum of path costs

(non-)metric Distance function

Broadcast Model 5 Breadth first tree cost to depth r

5

Routing Cost Models

Unicast

Cost Example Definition

Multicast 3 Steiner tree cost

Unicast 4 Sum of path costs

(non-)metric Distance function

Broadcast Model 5 Breadth first tree cost to depth r

5

Routing Cost Models

Controlled Broadcast

Cost Example Definition

Multicast 3 Steiner tree cost

Unicast 4 Sum of path costs

(non-)metric Distance function

Broadcast Model 5 Breadth first tree cost to depth r

6

Related Work

• FeedTree: RSS via P2P Multicast, [Sandler et al., IPTPS’05]

• Web Caching applications

• Combs, Needles and Haystacks Paper, [Liu et al. SENSYS’04]

• Data Gerrymandering, [Bagchi et al. T.A. TKDE]

• Minimum Cost 2-spanners: [Dodis & Khanna STOC’99] and

[Kortsarz & Peleg SICOMP’98]

• Multicommodity facility location, [Ravi & Sinha SODA’04]

• Classical Theory Problems

∗ Facility Location

∗ Steiner Tree (including Group Steiner Tree)

7

Our Results

• Multicast Model

∗ Exact Tree Algorithm (Distributed)

∗ General Graphs

? O(log n)-Approximation

? NP-Completeness

7

Our Results

• Multicast Model

∗ Exact Tree Algorithm (Distributed)

∗ General Graphs

? O(log n)-Approximation

? NP-Completeness

• Unicast Model

∗ Nonmetric Case — O(log n)-Approximation

∗ Identical Interest Sets / Metric Case — O(1)-Approximation

∗ NP-Completeness

7

Our Results

• Multicast Model

∗ Exact Tree Algorithm (Distributed)

∗ General Graphs

? O(log n)-Approximation

? NP-Completeness

• Unicast Model

∗ Nonmetric Case — O(log n)-Approximation

∗ Identical Interest Sets / Metric Case — O(1)-Approximation

∗ NP-Completeness

• Controlled Broadcast Model

∗ A Polynomial LP solution

∗ A Combinatorial solution

8

The Multicast Model – With Aggregation

• want the following

∗ A push subtree Ti for each source i

∗ A pull subtree T ′
j for each sink j

∗ Whenever j is interested in i (i ∈ Ij), Ti ∩ T ′
j 6= ∅.

∗ Total cost of all trees (summing edge weights in each tree) is

minimized.

• For Trees:

∗ Basic idea: for each edge, compute minimum possible cost for

connectedness of trees.

∗ Claim: Global optimum consists of this solution at every edge.

9

The Multicast Model

• Indicator variable xuvi says whether uv ∈ Ti (push tree i)

• yuvj indicates uv ∈ T ′
j (pull tree j)

• zuvij indicates i ∈ Ij and uv ∈ P (Ti ∩ T ′
j, j)

• arbitrary mij is average response frequency

• Minimize Objective function∑
i∈P

pi

∑
uv∈E

cuvxuvi +
∑
j∈Q

qj

∑
uv∈E

cuvyuvj +
∑
i∈P

∑
j∈Q

mij

∑
uv∈E

cuvzuvij

10

Multicast Model
An Exact (Distributed) Tree Algorithm

• G is a tree T = (V,E)

• MinC(Ti ∩ T ′
j, j) is sum of edge weights on shortest path P (Ti, j)

• For edge uv, let Suv be largest subtree containing u but not v

• Note Svu = V \ Suv

• Substituting V = Suv ∪ Svu, we obtain two symmetric terms (eg.):

∑
uv∈E

cuv

 ∑
i∈Suv

pixuvi +
∑

j∈Svu

qjyuvj +
∑

i∈Suv

∑
j∈Svu

mijzuvij



• Claim: Global optimum minimizes [. . .] independently!

11

Tree Algorithm Diagram

a

b

c

x

y

z

• Interest sets: {x, z} want {a, b, c}; y wants only a.

11

Tree Algorithm Diagram

a

b

c

x

y

z

• Interest sets: {x, z} want {a, b, c}; y wants only a.

11

Tree Algorithm Diagram

a

b

c

x

y

z

wv

• Interest sets: {x, z} want {a, b, c}; y wants only a.

• Question: What is the minimum we can pay on edge vw?

11

Tree Algorithm Diagram

a

b

c

x

y

z

y

z

a

b

c

wv

• Interest sets: {x, z} want {a, b, c}; y wants only a.

• Question: What is the minimum we can pay on edge vw?

12

Bipartite Minimum Weight Vertex Cover

c

b

a y

z

12

Bipartite Minimum Weight Vertex Cover

c

b

a y

z

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

12

Bipartite Minimum Weight Vertex Cover

c

b

a y

zs
t

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

12

Bipartite Minimum Weight Vertex Cover

s
t

b

a

c

z

y

8
8

8
8

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

12

Bipartite Minimum Weight Vertex Cover

s
t

b

a

c

z

y

8
8

8
8

A B

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

12

Bipartite Minimum Weight Vertex Cover

c

b

a y

z

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

• Application: Set A = Pvw and B = Qvw

12

Bipartite Minimum Weight Vertex Cover

c

b

a y

z

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

• Application: Set A = Pvw and B = Qvw ∪ {xij | (i, j) ∈ Xvw} for

response costs.

12

Bipartite Minimum Weight Vertex Cover

c

b

a y

z

• Well Known: For bipartite Gvw = (A ∪ B,E), MWVC ∈ P (Max

flow). Find min cut R, to get MWVC Cvw = (A \R) ∪ (B ∩R)

• Application: Set A = Pvw and B = Qvw ∪ {xij | (i, j) ∈ Xvw} for

response costs.

Lemma 1. For each arc e = vw, the MWVC weight of Gvw is the
minimum value paid for vw in any optimal solution.

13

Tree Algorithm — Tiebreaking

a

b

c

x

y

z

• Long chain, no sources or sinks.

13

Tree Algorithm — Tiebreaking

a

b

c

x

y

z

a

b

c

z

y a

b

c

z

y a

b

c

z

y

• Long chain, no sources or sinks.

• Identical Bipartite graph problem

13

Tree Algorithm — Tiebreaking

a

b

c

x

y

z

a

b

c

z

y a

b

c

z

y a

b

c

z

y

• Long chain, no sources or sinks.

• Identical Bipartite graph problem

• Suppose many possible MWVCs (eg a + b + c = a + z = y + z).

• How to break MWVC ties?

13

Tree Algorithm — Tiebreaking

a

b

c

x

y

z

a

b

c

z

y a

b

c

z

y a

b

c

z

y

• Long chain, no sources or sinks.

• Identical Bipartite graph problem

• Suppose many possible MWVCs (eg a + b + c = a + z = y + z).

• How to break MWVC ties?

Defn: In bipartite G = (A∪B,E), an MWVC is A-maximum if it has

maximum weight in A.

14

A Consistent Tiebreaking Solution

Defn: In bipartite G = (A∪B,E), an MWVC is A-maximum if it has

maximum weight in A.

14

A Consistent Tiebreaking Solution

Defn: In bipartite G = (A∪B,E), an MWVC is A-maximum if it has

maximum weight in A.

A
1

B
1

A
2

B
2

B
A E

Lemma 2. Let G = (A ∪ B,E), let A1, A2 ⊆ A and let B1, B2 ⊆ B.
If A1∪B1 and A2∪B2 are both A-maximum minimum weight vertex
covers, ...

14

A Consistent Tiebreaking Solution

Defn: In bipartite G = (A∪B,E), an MWVC is A-maximum if it has

maximum weight in A.

B
A E

B
2

B
1

A
2

A
1

Lemma 2. Let G = (A ∪ B,E), let A1, A2 ⊆ A and let B1, B2 ⊆ B.
If A1∪B1 and A2∪B2 are both A-maximum minimum weight vertex
covers, ... then A1 = A2 and B1 = B2.

Unique solution per edge!

15

Tree Algorithm — Structural Continuity

a

b

c

x

y

z

y

z

a

b

c

wv

• Interest sets — recall: {x, z} want {a, b, c}; y wants only a.

15

Tree Algorithm — Structural Continuity

a

b

c

x

y

z

w

u

v

• Interest sets — recall: {x, z} want {a, b, c}; y wants only a.

• What about Guv? Clearly different.

15

Tree Algorithm — Structural Continuity

a

b

c

x

y

z

x

b

a y

z

w

u

v

• Interest sets — recall: {x, z} want {a, b, c}; y wants only a.

• What about Guv? Clearly different.

15

Tree Algorithm — Structural Continuity

a

b

c

x

y

z

y

z

a

b

cx

b

a y

z

w

u

v

• Interest sets — recall: {x, z} want {a, b, c}; y wants only a.

• What about Guv? Clearly different.

15

Tree Algorithm — Structural Continuity

a

b

c

x

y

z

y

z

a

b

cx

b

a y

z

w

u

v

• Interest sets — recall: {x, z} want {a, b, c}; y wants only a.

• What about Guv? Clearly different.

• Are push trees, pull trees and response paths connected?

Lemma 3. If we compute push-maximum MWVC for every edge, then
Push and Pull subtrees are connected.

16

Structural Continuity Solution
Yes!!!

a

b

c

x

y

z

y

z

a

b

cx

b

a y

z

w

u

v

16

Structural Continuity Solution
Yes!!!

y

z

a

b

cx

b

a y

z

16

Structural Continuity Solution
Yes!!!

y

z

a

b

cx

b

a y

z

c

y

z

a

b

x

16

Structural Continuity Solution
Yes!!!

c

y

z

a

b

x

16

Structural Continuity Solution
Yes!!!

c

y

z

a

b

x

BA

Lemma 4. Let uvw be two consecutive edges, let A be the set of push
nodes in Guv, and let B be the set of (non-push) nodes in Gvw.

16

Structural Continuity Solution
Yes!!!

c

y

z

a

b

x

A
1 B1

BA

Lemma 4. Let uvw be two consecutive edges, let A be the set of push
nodes in Guv, and let B be the set of (non-push) nodes in Gvw. Let
• A1, B1 be parts of push-maximum MWVC of Gvw in A,B resp.,

and

16

Structural Continuity Solution
Yes!!!

c

y

z

a

b

x

A
1 B1

B2
A2

BA

Lemma 4. Let uvw be two consecutive edges, let A be the set of push
nodes in Guv, and let B be the set of (non-push) nodes in Gvw. Let
• A1, B1 be parts of push-maximum MWVC of Gvw in A,B resp.,

and
• A2, B2 be parts of push-maximum MWVC of Guv in A,B resp.

16

Structural Continuity Solution
Yes!!!

c

y

z

a

b

x

A
1

B1
A2

B2

BA

Lemma 4. Let uvw be two consecutive edges, let A be the set of push
nodes in Guv, and let B be the set of (non-push) nodes in Gvw. Let
• A1, B1 be parts of push-maximum MWVC of Gvw in A,B resp.,

and
• A2, B2 be parts of push-maximum MWVC of Guv in A,B resp.
• then A1 ⊆ A2 and B1 ⊇ B2.

Push/Pull subtrees, Response paths are connected!

17

Tree Algorithm

for each directed edge uv

construct the graph Guv

find its canonical minimum cut Cuv

for all i ∈ Puv

if i ∈ Cuv then include uv in Ti

for all j ∈ Qvu

if j ∈ Cuv then include uv in T ′
j

for all (i, j) ∈ Xuv

if xij ∈ Cuv then include uv in P (Ti, j)

18

Distributed Implementation

• Global All-to-all exchange of

∗ sets of push nodes’ frequencies,

∗ pull nodes’ frequencies and interest sets.

• Locally, each edge solves both its directions independently.

• Use the solution to push and pull information

Notes:

• Cost of first phase small compared to third.

• For small sets of distinct values, communication improved.

19

Multicast Model – General Graph Approximation
algorithm

• Reduction from Min Steiner Tree; NP-hard to approximate within

96/95. Chleb̀ık & Chleb̀ıkovà SWAT’02

Theorem 1. There is an expected O(log n)-approximation for the
Multicast problem in general graphs.

19

Multicast Model – General Graph Approximation
algorithm

• Reduction from Min Steiner Tree; NP-hard to approximate within

96/95. Chleb̀ık & Chleb̀ıkovà SWAT’02

Theorem 1. There is an expected O(log n)-approximation for the
Multicast problem in general graphs.

We use the following:

Theorem 2 (Fakcharoenphol et al. STOC’03).The distribution over
tree metrics resulting from (their) algorithm O(log n)-probabilistically
approximates the metric d.

20

General Graph Approximation algorithm ctd.

• Bound Derivation

∗ Choose T randomly from distribution of metric-spanning trees.

∗ Project structures in G into T . Obtain feasible solution for T .

∗ OPT (T) ≤ O(log n) ·OPT (G).

• Approximation Algorithm

∗ Solve T exactly using our algorithm.

∗ Project structures in T into G. Obtain feasible solution for G.

∗ ALG(G) ≤ 2 ·OPT (T)

20

General Graph Approximation algorithm ctd.

• Bound Derivation

∗ Choose T randomly from distribution of metric-spanning trees.

∗ Project structures in G into T . Obtain feasible solution for T .

∗ OPT (T) ≤ O(log n) ·OPT (G).

• Approximation Algorithm

∗ Solve T exactly using our algorithm.

∗ Project structures in T into G. Obtain feasible solution for G.

∗ ALG(G) ≤ 2 ·OPT (T) ≤ O(log n) ·OPT (G).

21

Multicast Model – Hardness

• Multicast problem with(out) aggregation: easy reduction from Min
Steiner tree.

∗ Arbitrary node becomes low-freq source

∗ Rest become high-freq Sink nodes

∗ Each interested in Source

21

Multicast Model – Hardness

• Multicast problem with(out) aggregation: easy reduction from Min
Steiner tree.

∗ Arbitrary node becomes low-freq source

∗ Rest become high-freq Sink nodes

∗ Each interested in Source

21

Multicast Model – Hardness

• Multicast problem with(out) aggregation: easy reduction from Min
Steiner tree.

∗ Arbitrary node becomes low-freq source

∗ Rest become high-freq Sink nodes

∗ Each interested in Source

• Min Steiner Tree NP-hard to approximate within 96/95. Chleb̀ık &
Chleb̀ıkovà SWAT’02

22

The Unicast Model

22

The Unicast Model

• Given (non-)metric distances duv for every pair (u, v) ∈ V × V .

• SetC(u, S) =
∑

k∈S duk

• find push-sets Pi and pull-sets Qj that minimize total communication

cost: ∑
i∈P

pi

∑
k∈Pi

dik +
∑
j∈Q

qj

∑
k∈Qj

dkj +
∑
j∈Q

qj · RespC(j),

• and satisfies: for all i ∈ Ij, Pi ∩Qj 6= ∅

• where

RespC(j) =

{
SetC(j, Qj) (aggregation model)∑

i∈Ij
MinC(Pi ∩Qj, j) otherwise.

23

Unicast Model with Aggregation
An Integer Program

• Replace response cost by doubling sink frequencies

• xik = 1 means i pushes to k

• ykj = 1 means j pulls from k

• rijk = 1 means i talks to j through k.

Minimize:
∑
i∈P

pi

∑
k∈V

dikxik +
∑
j∈Q

qj

∑
k∈V

dkjykj

subject to


rijk ≤ xik

rijk ≤ ykj∑
k rijk ≥ 1

, where xik, ykj, rijk ∈ {0, 1}.

24

Unicast Model with Aggregation
Nonmetric Case via Randomized Rounding

• Convert to LP: Use ≥ 0 instead of ∈ {0, 1}

• Solve and discard values ≤ 1/n2 and scale by n/(n− 1)

• Round values up to powers of 1/2, obtain (x̃, ỹ, z̃)

• For node k and 0 ≤ p < 2 log n, define Xpk as i such that x̃ik ≥ 1/2p.

• ∀p, k: with probability min{1, (log n)/2p} add k to Pi and Qj for all

i ∈ Xpk and j ∈ Ypk.

Theorem 3. With high probability, solution is feasible, with cost
O(log n) ·OPTLP .

25

Unicast Model with Aggregation
Nonmetric Case via Randomized Rounding – Proof

• Since i ∈ Xlog(r̃ijk)k and j ∈ Ylog(r̃ijk)k,

Pr[k ∈ Pi ∩Qj] ≥ min{1, r̃ijk log(n)}.

• Clearly Pr[k ∈ Pi] ≤
∑

p:i∈Xpk
(log n)/2p = 2x̃ik log n

≤ min{1, 2x̃ik log n}.

• Pr[Pi ∩Qj = ∅] =
∏

k(1− r̃ijk log n) ≤ e−
P

k r̃ijk log n ≤ 1/n2.

• Define r.v. Ci as push cost for i, and r.v. Cik takes value dik with

probability min{1, 2x̃ik log n}.

• Chernoff-Hoeffding: w.h.p.
∑

k Cik ≤ O(log n) ·
∑

k dikx̃ik.

• Summing over all sources, sinks gives cost bound w.h.p.

26

Unicast Model with Aggregation
Uniform Interests, Metric Case — O(1)-Approximation

• Overview

∗ Applies for Identical/Disjoint Interest Sets

∗ Uses same Integer Program.

∗ Deterministic Rounding with Filtering Technique Lin & Vitter
IPL’92, Shmoys et al STOC’97, Ravi & Sinha SODA’04

27

Unicast Model with Aggregation
Uniform Interest Sets in Metric Case — Intro

• Basic definitions

∗ Optimal solution to the LP is (x∗, y∗, r∗).
∗ LP gives cost lower bounds Ci =

∑
k dikx

∗
ik and C ′

j =
∑

k dkjy
∗
kj

j
C’ = 6.5

j
3*(1/2)

2*(1/2)

4*(1)

j
C’ = 6.5

j
3*(1/2)

2*(1/2)

4*(1)

27

Unicast Model with Aggregation
Uniform Interest Sets in Metric Case — Intro

• Basic definitions

∗ Optimal solution to the LP is (x∗, y∗, r∗).
∗ LP gives cost lower bounds Ci =

∑
k dikx

∗
ik and C ′

j =
∑

k dkjy
∗
kj

∗ For node u, r > 0, define Bu(r) = {v : duv ≤ r}.
∗ Let 1 < α < β. Clearly Bj(C ′

j) ⊆ Bj(αC ′
j) ⊆ Bj(βC ′

j)

j

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

• Define push sets: Pi = {i} ∪ {`i} ∪ {j : j ∈ S′ and C ′
j ≤ Ci}

and pull sets: Qj = {j} ∪ {`′j} ∪ {i : i ∈ S and Ci < C ′
j}.

j

28

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm

• Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

• Define push sets: Pi = {i} ∪ {`i} ∪ {j : j ∈ S′ and C ′
j ≤ Ci}

and pull sets: Qj = {j} ∪ {`′j} ∪ {i : i ∈ S and Ci < C ′
j}.

• Intersection guarantee: For each i ∈ P and j ∈ Q, Pi ∩Qj 6= ∅.

j

m
i

29

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

• Relative distance limits total push extent:

For i ∈ P, α > 1,
∑

k/∈Bi(αCi)

x∗ik ≤ 1/α

jC’ j4C’

j

x

y

29

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

• Relative distance limits total push extent:

For i ∈ P, α > 1,
∑

k/∈Bi(αCi)

x∗ik ≤ 1/α

• Derive Approximation Ratio.

∗ Recall: Pi = {i} ∪ {`i} ∪ {j : j ∈ S′ and C ′
j ≤ Ci}

∗ Cost to i’s leader `i: 2βCi

l’j
j

29

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

• Relative distance limits total push extent:

For i ∈ P, α > 1,
∑

k/∈Bi(αCi)

x∗ik ≤ 1/α

• Derive Approximation Ratio.

∗ Recall: Pi = {i} ∪ {`i} ∪ {j : j ∈ S′ and C ′
j ≤ Ci}

∗ Cost to i’s leader `i: 2βCi

∗ Cost to (other) leaders Si:

Ci ≥
∑

j∈Si
(dij − αC ′

j)
∑

k∈Bj(αC′
j)

r∗ijk

j

i

29

Unicast Model with Aggregation
Uniform Interest Set / Metric — Algorithm Proof

• Relative distance limits total push extent:

For i ∈ P, α > 1,
∑

k/∈Bi(αCi)

x∗ik ≤ 1/α

• Derive Approximation Ratio.

∗ Recall: Pi = {i} ∪ {`i} ∪ {j : j ∈ S′ and C ′
j ≤ Ci}

∗ Cost to i’s leader `i: 2βCi

∗ Cost to (other) leaders Si:

Ci ≥
∑

j∈Si
(dij − αC ′

j)
∑

k∈Bj(αC′
j)

r∗ijk

≥
∑

j∈Si
dij

[
1− α

β

] [
1− 1

α

]
= (β−α)(α−1)

αβ

∑
j∈Si

dij.

∗ α = 1.69 and β = 2.86 obtains 14.57-approximation.

30

Conclusions and Open Problems

• Nonuniform Packet Lengths

• Multicast:

∗ General Graphs; Can O(log n) UB be improved to O(1)?

• Nonmetric Unicast:

∗ Derandomizing O(log n) algorithm.

∗ Close gap O(1) LB vs O(log n) UB gap

• Metric Unicast Case

∗ Improving the 14.57 bound for Uniform Interest sets.

∗ Non-uniform interest sets (UB and/or Hardness)

• Dynamic Graphs — Frequency, Position and Topology changes

31

Thank You!

• Chakinala, Kumarasubramanian, and Manokaran: partial support —

generous gift from Northeastern University alumnus Madhav Anand.

• Rajaraman, partial support — NSF grant IIS-0330201.

• Laing, partial support — the Mellon Foundation and the Faculty

Research Awards Committee of Tufts University, while visiting

Northeastern University.

