Playing Push vs Pull: Models and Algorithms for Disseminating Dynamic Data in Networks.

R.C. Chakinala, A. Kumarasubramanian, Kofi A. Laing
R. Manokaran, C. Pandu Rangan, R. Rajaraman

Push and Pull

Source

\square

Sink

Push and Pull

Source

Push \square

Sink

Push and Pull

A Simple Example

Using average source and sink frequencies.

Sources

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Push

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Push

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Push

Sources

\boldsymbol{x}

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Pull

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Pull

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Pull

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Pull

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Pull

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Pull

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Mixed

Sources

Sink

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Mixed

Sources

Sink

x

Store

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Mixed

Sources

Sink

Store

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Mixed

Sources

Sink

Store

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

A Simple Example

Using average source and sink frequencies.

Mixed

Sources

Sink

Store

	Aggregation	No Aggregation
Push	$4 x$	$4 x$
Pull	$6 y$	$7 y$
Mixed	$2 x+2 y$	$2 x+3 y$
Mixed is Best	$2 y<2 x<4 y$	$3 y<2 x<4 y$

General Problem - High Level

- INPUTS: Graph $G=(V, E)$ with:
* cost of updating set of stores: SetC : $V \times \operatorname{Powerset}(V) \longrightarrow \mathbb{R}^{+}$
* Source Set $\mathcal{P} \subseteq V$, Sink Set $\mathcal{Q} \subseteq V$
* For every source $i \in \mathcal{P}$, a source frequency p_{i}
* For every sink $j \in \mathcal{Q}$, a sink frequency q_{j}
* For every $\operatorname{sink} j \in \mathcal{Q}$, an interest set I_{j}

General Problem - High Level

- INPUTS: Graph $G=(V, E)$ with:
* cost of updating set of stores: SetC : $V \times \operatorname{Powerset}(V) \longrightarrow \mathbb{R}^{+}$
* Source Set $\mathcal{P} \subseteq V$, Sink Set $\mathcal{Q} \subseteq V$
* For every source $i \in \mathcal{P}$, a source frequency p_{i}
* For every sink $j \in \mathcal{Q}$, a sink frequency q_{j}
* For every sink $j \in \mathcal{Q}$, an interest set I_{j}
- OUTPUTS:
* For every source $i \in \mathcal{P}$, a Push set P_{i}
* For every sink $j \in \mathcal{Q}$, a Pull Set Q_{j}
* Intersection requirement: $i \in I_{j} \Rightarrow P_{i} \bigcap Q_{j} \neq \emptyset$.
* MINIMIZE: total cost of push-updates, queries and responses:

$$
\sum_{i \in \mathcal{P}} p_{i} \cdot \operatorname{SetC}\left(i, P_{i}\right)+\sum_{j \in \mathcal{Q}} q_{j} \cdot \operatorname{Set} \mathrm{C}\left(j, Q_{j}\right)+\sum_{j \in \mathcal{Q}} q_{j} \cdot \operatorname{RespC}(j)
$$

Routing Cost Models

Multicast

Cost	Example	Definition
Multicast	3	Steiner tree cost
Unicast	4	Sum of path costs (non-)metric Distance function
Broadcast Model	5	Breadth first tree cost to depth r

Routing Cost Models

Unicast

Cost	Example	Definition
Multicast	3	Steiner tree cost
Unicast	4	Sum of path costs (non-)metric Distance function
Broadcast Model	5	Breadth first tree cost to depth r

Routing Cost Models

Controlled Broadcast

Cost	Example	Definition
Multicast	3	Steiner tree cost
Unicast	4	Sum of path costs (non-)metric Distance function
Broadcast Model	5	Breadth first tree cost to depth r

Related Work

- FeedTree: RSS via P2P Multicast, [Sandler et al., IPTPS'05]
- Web Caching applications
- Combs, Needles and Haystacks Paper, [Liu et al. SENSYS'04]
- Data Gerrymandering, [Bagchi et al. T.A. TKDE]
- Minimum Cost 2-spanners: [Dodis \& Khanna STOC'99] and [Kortsarz \& Peleg SICOMP'98]
- Multicommodity facility location, [Ravi \& Sinha SODA'04]
- Classical Theory Problems
* Facility Location
* Steiner Tree (including Group Steiner Tree)

Our Results

- Multicast Model
* Exact Tree Algorithm (Distributed)
* General Graphs
* $O(\log n)$-Approximation
* NP-Completeness

Our Results

- Multicast Model
* Exact Tree Algorithm (Distributed)
* General Graphs
* $O(\log n)$-Approximation
* NP-Completeness
- Unicast Model
* Nonmetric Case - $O(\log n)$-Approximation
* Identical Interest Sets / Metric Case - $O(1)$-Approximation
* NP-Completeness

Our Results

- Multicast Model
* Exact Tree Algorithm (Distributed)
* General Graphs
* $O(\log n)$-Approximation
* NP-Completeness
- Unicast Model
* Nonmetric Case - $O(\log n)$-Approximation
* Identical Interest Sets / Metric Case - $O(1)$-Approximation
* NP-Completeness
- Controlled Broadcast Model
* A Polynomial LP solution
* A Combinatorial solution

The Multicast Model - With Aggregation

- want the following
* A push subtree T_{i} for each source i
* A pull subtree T_{j}^{\prime} for each sink j
* Whenever j is interested in $i\left(i \in I_{j}\right), T_{i} \cap T_{j}^{\prime} \neq \emptyset$.
* Total cost of all trees (summing edge weights in each tree) is minimized.
- For Trees:
* Basic idea: for each edge, compute minimum possible cost for connectedness of trees.
* Claim: Global optimum consists of this solution at every edge.

The Multicast Model

- Indicator variable $x_{u v i}$ says whether $u v \in T_{i}$ (push tree i)
- $y_{u v j}$ indicates $u v \in T_{j}^{\prime}$ (pull tree j)
- $z_{u v i j}$ indicates $i \in I_{j}$ and $u v \in P\left(T_{i} \cap T_{j}^{\prime}, j\right)$
- arbitrary $m_{i j}$ is average response frequency
- Minimize Objective function

$$
\sum_{i \in \mathcal{P}} p_{i} \sum_{u v \in E} c_{u v} x_{u v i}+\sum_{j \in \mathcal{Q}} q_{j} \sum_{u v \in E} c_{u v} y_{u v j}+\sum_{i \in \mathcal{P}} \sum_{j \in \mathcal{Q}} m_{i j} \sum_{u v \in E} c_{u v} z_{u v i j}
$$

Multicast Model An Exact (Distributed) Tree Algorithm

- G is a tree $T=(V, E)$
- $\operatorname{MinC}\left(T_{i} \cap T_{j}^{\prime}, j\right)$ is sum of edge weights on shortest path $P\left(T_{i}, j\right)$
- For edge $u v$, let $S_{u v}$ be largest subtree containing u but not v
- Note $S_{v u}=V \backslash S_{u v}$
- Substituting $V=S_{u v} \cup S_{v u}$, we obtain two symmetric terms (eg.):

$$
\sum_{u v \in E} c_{u v}\left[\sum_{i \in S_{u v}} p_{i} x_{u v i}+\sum_{j \in S_{v u}} q_{j} y_{u v j}+\sum_{i \in S_{u v}} \sum_{j \in S_{v u}} m_{i j} z_{u v i j}\right]
$$

- Claim: Global optimum minimizes [...] independently!

Tree Algorithm Diagram

- Interest sets: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.

Tree Algorithm Diagram

- Interest sets: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.

Tree Algorithm Diagram

- Interest sets: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.
- Question: What is the minimum we can pay on edge $v w$?

Tree Algorithm Diagram

- Interest sets: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.
- Question: What is the minimum we can pay on edge $v w$?

Bipartite Minimum Weight Vertex Cover

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$
- Application: Set $A=P_{v w}$ and $B=Q_{v w}$

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$
- Application: Set $A=P_{v w}$ and $B=Q_{v w} \cup\left\{x_{i j} \mid(i, j) \in X_{v w}\right\}$ for response costs.

Bipartite Minimum Weight Vertex Cover

- Well Known: For bipartite $G_{v w}=(A \cup B, E)$, MWVC $\in P$ (Max flow). Find min cut R, to get MWVC $C_{v w}=(A \backslash R) \cup(B \cap R)$
- Application: Set $A=P_{v w}$ and $B=Q_{v w} \cup\left\{x_{i j} \mid(i, j) \in X_{v w}\right\}$ for response costs.

Lemma 1. For each arc $e=v w$, the $M W V C$ weight of $G_{v w}$ is the minimum value paid for vw in any optimal solution.

Tree Algorithm - Tiebreaking

- Long chain, no sources or sinks.

Tree Algorithm - Tiebreaking

- Long chain, no sources or sinks.
- Identical Bipartite graph problem

Tree Algorithm - Tiebreaking

- Long chain, no sources or sinks.
- Identical Bipartite graph problem
- Suppose many possible MWVCs (eg $a+b+c=a+z=y+z$).
- How to break MWVC ties?

Tree Algorithm - Tiebreaking

- Long chain, no sources or sinks.
- Identical Bipartite graph problem
- Suppose many possible MWVCs (eg $a+b+c=a+z=y+z$).
- How to break MWVC ties?

Defn: In bipartite $G=(A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

A Consistent Tiebreaking Solution

Defn: In bipartite $G=(A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

A Consistent Tiebreaking Solution

Defn: In bipartite $G=(A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

Lemma 2. Let $G=(A \cup B, E)$, let $A_{1}, A_{2} \subseteq A$ and let $B_{1}, B_{2} \subseteq B$. If $A_{1} \cup B_{1}$ and $A_{2} \cup B_{2}$ are both A-maximum minimum weight vertex covers, ...

A Consistent Tiebreaking Solution

Defn: In bipartite $G=(A \cup B, E)$, an MWVC is A-maximum if it has maximum weight in A.

Lemma 2. Let $G=(A \cup B, E)$, let $A_{1}, A_{2} \subseteq A$ and let $B_{1}, B_{2} \subseteq B$. If $A_{1} \cup B_{1}$ and $A_{2} \cup B_{2}$ are both A-maximum minimum weight vertex covers, \ldots then $A_{1}=A_{2}$ and $B_{1}=B_{2}$.

Unique solution per edge!

Tree Algorithm - Structural Continuity

- Interest sets - recall: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.

Tree Algorithm - Structural Continuity

- Interest sets - recall: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.
- What about $G_{u v}$? Clearly different.

Tree Algorithm - Structural Continuity

- Interest sets - recall: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.
- What about $G_{u v}$? Clearly different.

Tree Algorithm - Structural Continuity

- Interest sets - recall: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.
- What about $G_{u v}$? Clearly different.

Tree Algorithm - Structural Continuity

- Interest sets - recall: $\{x, z\}$ want $\{a, b, c\} ; y$ wants only a.
- What about $G_{u v}$? Clearly different.
- Are push trees, pull trees and response paths connected?

Lemma 3. If we compute push-maximum MWVC for every edge, then Push and Pull subtrees are connected.

Structural Continuity Solution

Structural Continuity Solution

Yes!!!

Structural Continuity Solution

Yes!!!

Structural Continuity Solution

Yes!!!

Structural Continuity Solution

Yes!!!

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in $G_{u v}$, and let B be the set of (non-push) nodes in $G_{v w}$.

Structural Continuity Solution

Yes!!!

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in $G_{u v}$, and let B be the set of (non-push) nodes in $G_{v w}$. Let

- A_{1}, B_{1} be parts of push-maximum $M W V C$ of $G_{v w}$ in A, B resp., and

Structural Continuity Solution

Yes!!!

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in $G_{u v}$, and let B be the set of (non-push) nodes in $G_{v w}$. Let

- A_{1}, B_{1} be parts of push-maximum $M W V C$ of $G_{v w}$ in A, B resp., and
- A_{2}, B_{2} be parts of push-maximum $M W V C$ of $G_{u v}$ in A, B resp.

Structural Continuity Solution

Yes!!!

Lemma 4. Let uvw be two consecutive edges, let A be the set of push nodes in $G_{u v}$, and let B be the set of (non-push) nodes in $G_{v w}$. Let

- A_{1}, B_{1} be parts of push-maximum $M W V C$ of $G_{v w}$ in A, B resp., and
- A_{2}, B_{2} be parts of push-maximum $M W V C$ of $G_{u v}$ in A, B resp.
- then $A_{1} \subseteq A_{2}$ and $B_{1} \supseteq B_{2}$.

Push/Pull subtrees, Response paths are connected!

Tree Algorithm

for each directed edge uv
construct the graph $G_{u v}$
find its canonical minimum cut $C_{u v}$
for all $i \in P_{u v}$
if $i \in C_{u v}$ then include $u v$ in T_{i}
for all $j \in Q_{v u}$
if $j \in C_{u v}$ then include $u v$ in T_{j}^{\prime}
for all $(i, j) \in X_{u v}$
if $x_{i j} \in C_{u v}$ then include $u v$ in $P\left(T_{i}, j\right)$

Distributed Implementation

- Global All-to-all exchange of
* sets of push nodes' frequencies,
* pull nodes' frequencies and interest sets.
- Locally, each edge solves both its directions independently.
- Use the solution to push and pull information

Notes:

- Cost of first phase small compared to third.
- For small sets of distinct values, communication improved.

Multicast Model - General Graph Approximation algorithm

- Reduction from Min Steiner Tree; NP-hard to approximate within 96/95. Chlebìk \& Chlebìkovà SWAT'02

Theorem 1. There is an expected $O(\log n)$-approximation for the Multicast problem in general graphs.

Multicast Model - General Graph Approximation algorithm

- Reduction from Min Steiner Tree; NP-hard to approximate within 96/95. Chlebìk \& Chlebìkovà SWAT'02

Theorem 1. There is an expected $O(\log n)$-approximation for the Multicast problem in general graphs.

We use the following:
Theorem 2 (Fakcharoenphol et al. STOC'03). The distribution over tree metrics resulting from (their) algorithm $O(\log n)$-probabilistically approximates the metric d.

General Graph Approximation algorithm ctd.

- Bound Derivation
* Choose T randomly from distribution of metric-spanning trees.
* Project structures in G into T. Obtain feasible solution for T.
* $O P T(T) \leq O(\log n) \cdot O P T(G)$.
- Approximation Algorithm
* Solve T exactly using our algorithm.
* Project structures in T into G. Obtain feasible solution for G.
* $\operatorname{ALG}(G) \leq 2 \cdot \operatorname{OPT}(T)$

General Graph Approximation algorithm ctd.

- Bound Derivation
* Choose T randomly from distribution of metric-spanning trees.
* Project structures in G into T. Obtain feasible solution for T. * $O P T(T) \leq O(\log n) \cdot O P T(G)$.
- Approximation Algorithm
* Solve T exactly using our algorithm.
* Project structures in T into G. Obtain feasible solution for G.
* $\operatorname{ALG}(G) \leq 2 \cdot \operatorname{OPT}(T) \leq O(\log n) \cdot O P T(G)$.

Multicast Model - Hardness

- Multicast problem with(out) aggregation: easy reduction from Min Steiner tree.
* Arbitrary node becomes low-freq source
* Rest become high-freq Sink nodes
* Each interested in Source

Multicast Model - Hardness

- Multicast problem with(out) aggregation: easy reduction from Min Steiner tree.
* Arbitrary node becomes low-freq source
* Rest become high-freq Sink nodes
* Each interested in Source

Multicast Model - Hardness

- Multicast problem with(out) aggregation: easy reduction from Min Steiner tree.
* Arbitrary node becomes low-freq source
* Rest become high-freq Sink nodes
* Each interested in Source
- Min Steiner Tree NP-hard to approximate within 96/95. Chlebìk \& Chlebìkovà SWAT'02

The Unicast Model

The Unicast Model

- Given (non-)metric distances $d_{u v}$ for every pair $(u, v) \in V \times V$.
- $\operatorname{SetC}(u, S)=\sum_{k \in S} d_{u k}$
- find push-sets P_{i} and pull-sets Q_{j} that minimize total communication cost:

$$
\sum_{i \in \mathcal{P}} p_{i} \sum_{k \in P_{i}} d_{i k}+\sum_{j \in \mathcal{Q}} q_{j} \sum_{k \in Q_{j}} d_{k j}+\sum_{j \in \mathcal{Q}} q_{j} \cdot \operatorname{RespC}(j),
$$

- and satisfies: for all $i \in I_{j}, P_{i} \cap Q_{j} \neq \emptyset$
- where

$$
\operatorname{RespC}(j)= \begin{cases}\operatorname{SetC}\left(j, Q_{j}\right) & \text { (aggregation model) } \\ \sum_{i \in I_{j}} \operatorname{MinC}\left(P_{i} \cap Q_{j}, j\right) & \text { otherwise }\end{cases}
$$

Unicast Model with Aggregation An Integer Program

- Replace response cost by doubling sink frequencies
- $x_{i k}=1$ means i pushes to k
- $y_{k j}=1$ means j pulls from k
- $r_{i j k}=1$ means i talks to j through k.

Minimize: $\quad \sum_{i \in \mathcal{P}} p_{i} \sum_{k \in V} d_{i k} x_{i k}+\sum_{j \in \mathcal{Q}} q_{j} \sum_{k \in V} d_{k j} y_{k j}$
subject to $\left\{\begin{array}{l}r_{i j k} \leq x_{i k} \\ r_{i j k} \leq y_{k j} \\ \sum_{k} r_{i j k} \geq 1\end{array}\right.$, where $x_{i k}, y_{k j}, r_{i j k} \in\{0,1\}$.

Unicast Model with Aggregation Nonmetric Case via Randomized Rounding

- Convert to LP: Use ≥ 0 instead of $\in\{0,1\}$
- Solve and discard values $\leq 1 / n^{2}$ and scale by $n /(n-1)$
- Round values up to powers of $1 / 2$, obtain $(\tilde{x}, \tilde{y}, \tilde{z})$
- For node k and $0 \leq p<2 \log n$, define $X_{p k}$ as i such that $\tilde{x}_{i k} \geq 1 / 2^{p}$.
- $\forall p, k$: with probability $\min \left\{1,(\log n) / 2^{p}\right\}$ add k to P_{i} and Q_{j} for all $i \in X_{p k}$ and $j \in Y_{p k}$.

Theorem 3. With high probability, solution is feasible, with cost $O(\log n) \cdot O P T_{L P}$.

Unicast Model with Aggregation Nonmetric Case via Randomized Rounding - Proof

- Since $i \in X_{\log \left(\tilde{r}_{i j k}\right) k}$ and $j \in Y_{\log \left(\tilde{r}_{i j k}\right) k}$, $\operatorname{Pr}\left[k \in P_{i} \cap Q_{j}\right] \geq \min \left\{1, \tilde{r}_{i j k} \log (n)\right\}$.
- Clearly $\operatorname{Pr}\left[k \in P_{i}\right] \leq \sum_{p: i \in X_{p k}}(\log n) / 2^{p}=2 \tilde{x}_{i k} \log n$ $\leq \min \left\{1,2 \tilde{x}_{i k} \log n\right\}$.
- $\operatorname{Pr}\left[P_{i} \cap Q_{j}=\emptyset\right]=\prod_{k}\left(1-\tilde{r}_{i j k} \log n\right) \leq e^{-\sum_{k} \tilde{r}_{i j k} \log n} \leq 1 / n^{2}$.
- Define r.v. C_{i} as push cost for i, and r.v. $C_{i k}$ takes value $d_{i k}$ with probability $\min \left\{1,2 \tilde{x}_{i k} \log n\right\}$.
- Chernoff-Hoeffding: w.h.p. $\sum_{k} C_{i k} \leq O(\log n) \cdot \sum_{k} d_{i k} \tilde{x}_{i k}$.
- Summing over all sources, sinks gives cost bound w.h.p.

Unicast Model with Aggregation

Uniform Interests, Metric Case - $O(1)$-Approximation

- Overview
* Applies for Identical/Disjoint Interest Sets
* Uses same Integer Program.
* Deterministic Rounding with Filtering Technique Lin \& Vitter IPL'92, Shmoys et al STOC'97, Ravi \& Sinha SODA'04

Unicast Model with Aggregation Uniform Interest Sets in Metric Case - Intro

- Basic definitions
* Optimal solution to the LP is $\left(x^{*}, y^{*}, r^{*}\right)$.
* LP gives cost lower bounds $C_{i}=\sum_{k} d_{i k} x_{i k}^{*}$ and $C_{j}^{\prime}=\sum_{k} d_{k j} y_{k j}^{*}$

Unicast Model with Aggregation Uniform Interest Sets in Metric Case - Intro

- Basic definitions
* Optimal solution to the LP is $\left(x^{*}, y^{*}, r^{*}\right)$.
* LP gives cost lower bounds $C_{i}=\sum_{k} d_{i k} x_{i k}^{*}$ and $C_{j}^{\prime}=\sum_{k} d_{k j} y_{k j}^{*}$
* For node $u, r>0$, define $B_{u}(r)=\left\{v: d_{u v} \leq r\right\}$.
* Let $1<\alpha<\beta$. Clearly $B_{j}\left(C_{j}^{\prime}\right) \subseteq B_{j}\left(\alpha C_{j}^{\prime}\right) \subseteq B_{j}\left(\beta C_{j}^{\prime}\right)$

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
- Define push sets: $P_{i}=\{i\} \cup\left\{\ell_{i}\right\} \cup\left\{j: j \in S^{\prime}\right.$ and $\left.C_{j}^{\prime} \leq C_{i}\right\}$ and pull sets: $Q_{j}=\{j\} \cup\left\{\ell_{j}^{\prime}\right\} \cup\left\{i: i \in S\right.$ and $\left.C_{i}<C_{j}^{\prime}\right\}$.

Unicast Model with Aggregation Uniform Interest Set / Metric - Algorithm

- Choose leaders: nodes with disjoint β-balls, by nondecreasing cost.
- Define push sets: $P_{i}=\{i\} \cup\left\{\ell_{i}\right\} \cup\left\{j: j \in S^{\prime}\right.$ and $\left.C_{j}^{\prime} \leq C_{i}\right\}$ and pull sets: $Q_{j}=\{j\} \cup\left\{\ell_{j}^{\prime}\right\} \cup\left\{i: i \in S\right.$ and $\left.C_{i}<C_{j}^{\prime}\right\}$.
- Intersection guarantee: For each $i \in \mathcal{P}$ and $j \in \mathcal{Q}, P_{i} \cap Q_{j} \neq \emptyset$.

Unicast Model with Aggregation

Uniform Interest Set / Metric - Algorithm Proof

- Relative distance limits total push extent:

For $i \in \mathcal{P}, \alpha>1, \sum_{k \notin B_{i}\left(\alpha C_{i}\right)} x_{i k}^{*} \leq 1 / \alpha$

Unicast Model with Aggregation

Uniform Interest Set / Metric - Algorithm Proof

- Relative distance limits total push extent:

For $i \in \mathcal{P}, \alpha>1, \sum_{k \notin B_{i}\left(\alpha C_{i}\right)} x_{i k}^{*} \leq 1 / \alpha$

- Derive Approximation Ratio.
* Recall: $P_{i}=\{i\} \cup\left\{\ell_{i}\right\} \cup\left\{j: j \in S^{\prime}\right.$ and $\left.C_{j}^{\prime} \leq C_{i}\right\}$
* Cost to i 's leader $\ell_{i}: 2 \beta C_{i}$

Unicast Model with Aggregation

Uniform Interest Set / Metric - Algorithm Proof

- Relative distance limits total push extent:

For $i \in \mathcal{P}, \alpha>1, \sum_{k \notin B_{i}\left(\alpha C_{i}\right)} x_{i k}^{*} \leq 1 / \alpha$

- Derive Approximation Ratio.
* Recall: $P_{i}=\{i\} \cup\left\{\ell_{i}\right\} \cup\left\{j: j \in S^{\prime}\right.$ and $\left.C_{j}^{\prime} \leq C_{i}\right\}$
* Cost to i 's leader $\ell_{i}: 2 \beta C_{i}$
* Cost to (other) leaders S_{i} :

$$
C_{i} \geq \sum_{j \in S_{i}}\left(d_{i j}-\alpha C_{j}^{\prime}\right) \sum_{k \in B_{j}\left(\alpha C_{j}^{\prime}\right)} r_{i j k}^{*}
$$

Unicast Model with Aggregation

Uniform Interest Set / Metric - Algorithm Proof

- Relative distance limits total push extent:

For $i \in \mathcal{P}, \alpha>1, \sum_{k \notin B_{i}\left(\alpha C_{i}\right)} x_{i k}^{*} \leq 1 / \alpha$

- Derive Approximation Ratio.
* Recall: $P_{i}=\{i\} \cup\left\{\ell_{i}\right\} \cup\left\{j: j \in S^{\prime}\right.$ and $\left.C_{j}^{\prime} \leq C_{i}\right\}$
* Cost to i 's leader $\ell_{i}: 2 \beta C_{i}$
* Cost to (other) leaders S_{i} :

$$
\begin{aligned}
C_{i} & \geq \sum_{j \in S_{i}}\left(d_{i j}-\alpha C_{j}^{\prime}\right) \sum_{k \in B_{j}\left(\alpha C_{j}^{\prime}\right)} r_{i j k}^{*} \\
& \geq \sum_{j \in S_{i}} d_{i j}\left[1-\frac{\alpha}{\beta}\right]\left[1-\frac{1}{\alpha}\right] \\
& =\frac{(\beta-\alpha)(\alpha-1)}{\alpha \beta} \sum_{j \in S_{i}} d_{i j} .
\end{aligned}
$$

* $\alpha=1.69$ and $\beta=2.86$ obtains 14.57-approximation.

Conclusions and Open Problems

- Nonuniform Packet Lengths
- Multicast:
* General Graphs; Can $O(\log n)$ UB be improved to $O(1)$?
- Nonmetric Unicast:
* Derandomizing $O(\log n)$ algorithm.
* Close gap $O(1) \mathrm{LB}$ vs $O(\log n)$ UB gap
- Metric Unicast Case
* Improving the 14.57 bound for Uniform Interest sets.
* Non-uniform interest sets (UB and/or Hardness)
- Dynamic Graphs - Frequency, Position and Topology changes

Thank You!

- Chakinala, Kumarasubramanian, and Manokaran: partial support generous gift from Northeastern University alumnus Madhav Anand.
- Rajaraman, partial support - NSF grant IIS-0330201.
- Laing, partial support - the Mellon Foundation and the Faculty Research Awards Committee of Tufts University, while visiting Northeastern University.

