Delegate and Conquer: On Minimum Degree Minimum Cost Spanning Tree

> R. Ravi Carnegie Mellon University

Joint Work with Mohit Singh

Minimum Degree MST problem

Given an undirected graph G, cost function c, a bound B on maximum degree

- 1. Return an MST which satisfies the degree bounds, or
- 2. Show the degree bounds are infeasible for any MST of G.

Minimum Degree MST problem

Given an undirected graph G, cost function c, a bound B on maximum degree

- 1. Return an MST which satisfies the degree bounds, or
- 2. Show the degree bounds are infeasible for any MST of G.
- Problem is NP-complete
- Approximating cost and satisfying the degree bounds exactly is not possible.
- We consider the case for approximating the degree but satisfying the cost exactly, i.e., solution must be a MST.
- Bi-criteria approximations for the problem have been studied.

Previous Work

- Fischer '93 returns a MST with maximum degree
 O(B+log n) or shows infeasibility for degree bounds
 B
- Chaudury et al '05 give a quasi-polynomial time algorithm which returns a MST with maximum degree O(B+logn/log logn) or shows infeasibility for degree bounds B

Unweighted Case

Theorem [Furer & Raghavachari '92]: Given a unweighted graph and degree bounds B_v for vertex v, a polynomial time algorithm returns a Witness set W⊂V and a tree T such that

Solution	Infeasibility
If W= ϕ then deg _T (v) \leq B _v +1	No tree of G satisfies the
for each v∈V.	degree bounds on W.

Cf. Vizing's Theorem for edge-coloring a graph.

Witness Set

- W \subset V such that if C_1, \dots, C_r are components in G \setminus W.
- Total degree of nodes of W in any tree $T \ge r+|W|-1$
- Instance infeasible if $\sum_{w \in W} B_w < r + |W| 1$

Our Main Result (ICALP '06)

- Theorem: There exists a polynomial time algorithm which given a graph G=(V,E) with cost function c on edges and degree bounds B_v for each vertex v either
 - (Infeasibility) Shows that no MST satisfies the degree bounds.
 - (Solution) Returns a MST such that $deg_T(v) \le B_v + k$

Infeasibility is via a linear programming relaxation Here k = no. of distinct costs in an MST of G

7

• Any MST can be constructed by decomposing the graph into forests corresponding to each cost class.

Green=3

• Any MST can be constructed by decomposing the graph into forests corresponding to each cost class.

11

10/5/2006

Forests over Forests

 Theorem [Ellingham & Zha '00]: Given a connected unweighted graph, forest F, and degree bounds B_v for vertex v, there is a polynomial time algorithm that returns a witness set W and F-tree T (that connects F) such that either

Infeasibility ($W \neq \phi$)

or Solution (W= ϕ)

W "violates" the degree bounds for any F-tree T'. $\deg_{T}(v) \leq B_{v}+1.$

Independence (Almost)

- The degree bound needs to be divided among different cost classes.
- Need an Oracle to partition each $B_v = B_v^1 + ... + B_v^k$ for each v.
- Use $\mathsf{B^i}_v$ for constructing the appropriate forests $\mathsf{H^i}$ for cost class i.
- If the guesses were correct, $deg_{H^i}(v) \le B^i_v + 1$.
- Return T= $\bigcup_i H^i$

Big Picture

Two Caveats

- We only get $deg_T(v) = deg_{H^1}(v) + ... + deg_{H^k}(v)$ $\leq (B^1_v+1) + ... + (B^k_v+1)$ $= B^1_v + ... + B^k_v + k$ $= B_v + k$
- What is the Oracle?

Oracle: LP relaxation

• We use the LP solution.

$$\begin{array}{l} \min \sum_{e} c_{e} x_{e} \\ \text{s.t.} \\ \sum_{e \in \delta(v)} x_{e} \leq \mathsf{B}_{v} \\ x \in \mathsf{SP}(\mathcal{G}) \end{array} \quad \forall v \in \mathsf{V} \\ \end{array}$$

- SP(G) is the convex hull of spanning trees of G.
- c(x*)>c(MST) then the bounds are infeasible for any MST
- Instead of facing infeasibility at each FoF problem, we decide once.

Algorithm

- Solve LP relaxation to obtain optimal LP solution x*.
- (Check Feasibility) If c(x*)>c(MST), then declare the bounds infeasible
- (Divide Bounds) let $B_v^i = \left[\sum_{e \in \delta(v) \text{ and } cost(e)=i} X_e \right]$
- (Solve Subproblems) Use Forest over Forest algorithm to obtain Fⁱ with bounds at most Bⁱ_v+1.

• Return
$$T=\bigcup_i F^i$$

Algorithm

- Solve LP relaxation to obtain optimal LP solution x*.
- (Check Feasibility) If c(x*)>c(MST), then declare the bounds infeasible
- (Divide Bounds) let $B_v^i = \left[\sum_{e \in \delta(v) \text{ and } cost(e)=i} X_e \right]$
- (Solve Subproblems) Use Forest over Forest algorithm to obtain Fⁱ with bounds at most Bⁱ_v+1.

Need to make sure algorithm does not return a witness

LP is stronger

- Lemma: If any of the forest-over-forests problem with degree bounds given by the LP solution returns a witness showing infeasibility, then the LP has a value more than c(MST).
- Proof by contradiction: Let x* denote the optimum LP solution.

$$\begin{split} & \min \sum_{e} c_{e} x_{e} \\ & \text{s.t.} \\ & \sum_{s \in \delta(v)} x_{e} \leq \mathsf{B}_{v} \ \forall v \in \mathsf{V} \\ & x \in \mathsf{SP}(G) \end{split} \\ & \underbrace{Claim}_{e \in \delta(v)} c_{\mathsf{MST}} \Rightarrow \mathsf{each} \ \mathsf{T}_{j} \ \mathsf{is} \ \mathsf{a} \ \mathsf{MST} \\ & \mathsf{Proof:} \ cx^{*} = \sum_{j} \lambda_{j} \ \mathsf{c}(\mathsf{T}_{j}) \geq \sum_{j} \lambda_{j} \ \mathsf{c}_{\mathsf{MST}} = \mathsf{c}_{\mathsf{MST}} \\ & \mathsf{Hence}, \ \mathsf{each} \ \mathsf{c}(\mathsf{T}_{j}) \geq c_{\mathsf{MST}} \ \mathsf{must} \ \mathsf{hold} \ \mathsf{at} \ \mathsf{equality}. \end{split}$$

LP is stronger: Proof Contd

Let the ith forest-over-forest problem be infeasible.

Let $F_j \subset T_j$ be the i^{th} forest-over-forest solution. Each F_j is exactly the cost i edges of $T_{j.}$

<u>Claim</u>: Let $y=\sum_{j} \lambda^{j} F_{j}$. Then $deg_{v}(y) \leq B^{i}_{v} \forall v \in V$

Proof: y is the exactly the cost i edges of x*.

There is a convex combination of forest-over-forests which satisfies the degree bounds.

Let W be the witness for ith forest-over-forest problem. Then $\sum_{w \in W} \deg_{F_i}(w) \ge \sum_{w \in W} B_w^i + 1$ for each j.

Hence, for the convex combination y, $\sum_{w \in W} \deg_y(w) \ge \sum_{w \in W} B^i_w + 1$ Contradiction.

10/5/2006

Two Caveats

- What is the Oracle : Linear Program
- We still get $deg_T(v) = deg_{H^1}(v) + ... + deg_{H^k}(v)$

$$\leq (B^{1}_{v}+1) + ... + (B^{k}_{v}+1)$$

= $B^{1}_{v} + ... + B^{k}_{v} + k$
 $\leq B_{v} + k - 1 + k = B_{v} + 2k - 1$

Rounding Error

Strengthening of FR

• Theorem: Given a graph G=(V,E), degree bounds B_v for each vertex v, \exists polynomial time algorithm that returns a Witness set W and tree T such that

1.
$$W \neq \phi$$
 (Infeasible, as earlier...)

2. $W = \phi$ (Solution)

 $deg_T(v) \leq B_v + 1$ for each v

(Strong Solution) For each u∈V, there exists a tree

 T_u such that $deg_{T_u}(u) \le B_u$ and ∀v≠u: $deg_{T_u}(v) \le B_v$ +1.

- 1. Initialize with any tree T
- 2. Define Ugly:={v| deg_T(v) $\ge B_v$ +2}, Bad:={v| deg_T(v)=B_v+1} Good:={v|deg_T(v) $\le B_v$ }. If Ugly(T)= ϕ then return T
- 3. While there exists $e=(u,v) \in E \setminus T$ such that $u,v \in Good$
 - mark all vertices in the cycle in $T \cup e$ as good.
- If some Ugly vertex w is marked good, swap e for an edge incident at w and recursively improve u and v. Return to Step 2.
- 5. Return $W=Ugly \cup Bad$

If $deg_T(u) \le B_u$ and $deg_T(u) \le B_v$ then swap e and e'.

Claim: Both u and v can be "improved" in their own subtrees.

Claim: Both u and v can be "improved" in their own subtrees.

Proof: If there exists a edge f across subtrees then w would have been marked good earlier!

Claim: If the algorithm returns a witness W= Bad \cup Ugly then the degree bounds are infeasible.

Proof: Consider the components of T\W. We claim that components of T\W are also components of G\W. deg_T(w) ≥ B_w +1 for each w∈ Bad and deg_T(w) ≥ B_w +2 for each w∈ Ugly $\Rightarrow |C| \ge \sum_{w \in W} B_w + |W| + 1 - 2(|W|-1) \ge \sum_{w \in W} B_w - |W|+3.$ $\Rightarrow \sum_{w \in W} deg_T(w) \ge |C|+|W|-1 \ge (\sum_{w \in W} B_w) + 2$ for any tree T'

Strengthened FR

- 1. Initialize with any tree T
- 2. Define Ugly:={v| deg_T(v) $\ge B_v$ +2}, Bad:={v| deg_T(v)=B_v+1} Good:={v| deg_T(v) $\le B_v$ }. If (Ugly \cup Bad) = ϕ then return T
- 3. While there exists $e=(u,v) \in E \setminus T$ such that $u,v \in Good$
 - mark all vertices in the cycle in $T \cup e$ as good.
- 4. If some Ugly vertex w is marked good, swap e for an edge incident at w and recursively improve u and v. Return to Step 2.
- 5. Return $W=Ugly \cup Bad$

Strengthening of FR

• Theorem: Given a graph G=(V,E), degree bounds B_v for each vertex v, \exists polynomial time algorithm that returns a Witness set W and tree T such that

1.
$$W \neq \phi$$
 (Infeasible, as earlier...)

2. $W = \phi$ (Solution)

 $deg_T(v) \leq B_v + 1$ for each v

(Strong Solution) For each u∈V, there exists a tree

T_u such that deg_{T_u}(u)≤B_u and $\forall v \neq u$: deg_{T_u}(v)≤ B_v+1.

Forest over Forest Problem

Strengthening of Forest-over-Forest

- Theorem: A polynomial time algorithm returns a Witness set W and tree T such that
- 1. $W \neq \phi$ (Infeasible, as earlier...)
- 2. **W** = φ

(Solution)

 $\begin{array}{l} \text{deg}_{\mathsf{T}}(\mathsf{v}) \leq \mathsf{B}_{\mathsf{v}}\text{+}1 \text{ for} \\ \text{each } \mathsf{v} {\in} \mathsf{V} \end{array}$

(Strong Solution)

In each "supernode", there is at most 1 vertex at B_v +1 and one can choose a supernode such that every vertex satisfies the degree bound in that supernode.

- Solve LP relaxation to obtain optimal LP solution x*.
- (Check Feasibility) If c(x*)>c(MST), then declare the bounds infeasible
- (Divide Bounds) let $B_v^i = \left\lceil \sum_{e \in \delta(v) \text{ and } cost(e)=i} X_e \right\rceil$
- (Solve Subproblems) In a top down manner, solve the FoF problem using the Strong guarantee to ensure that the degree of any vertex exceeds its bound in at most 1 cost class.
- Return $T=\bigcup_i F^i$

BDMST problem

- Given an undirected graph G, cost function c, a bound B on maximum degree
 - 1. Return the cheapest tree which satisfies the degree bounds, or
 - 2. Show the degree bounds are infeasible for any tree of G

Konemann and Ravi '00,'02 gave a general procedure using Lagrangian relaxation for obtaining bicriteria approximation for BDMST problem. Using Fischer's algorithm they return a tree of cost $O(c_{opt})$ and degree $O(\Delta^*+\log n)$.

Using similar ideas, Chaudhuri et al'05, give a tree of cost at most c_{opt} and degree $O(\Delta^*+\log n)$

Open Problems

- Obtain a MST of max degree OPT+1 similar to unweighted case?
- Recently, Goemans announced an OPT+2 algorithm.

Questions?

10/5/2006

A Swap Theorem

• Theorem: Given any T, there exists a sequence of trees

$$T{=}T_1{\rightarrow}T_2{\rightarrow}\dots{\rightarrow}T_l$$

such that deg(T_i) \leq deg(T_{i-1}) and deg(T_I)= Δ^{*} . and \rightarrow is a single edge swap of equicost edges.

Proof: We will fix T_{opt} and make progress towards T_{opt} by edge swaps.

