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Dynamic Vertex Connectivity

For the dynamic graph:

we want to compute the number of vertex disjoint
paths from s to t? 2
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Dynamic Vertex Connectivity

For the dynamic graph:

we want to compute the number of vertex disjoint
paths from s to t? 2

The s and t vertices can be common for these paths.
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Dynamic Vertex Connectivity

An algorithm maintains the directed graph G = (V, E)
two vertices s, t and supports the following operations:

� insert(e) – inserts the edge e,

� delete(e) – deletes the edge e,

� paths – computes the number of vertex disjoint
paths between s and t,

� k-connected – checks if the graph is k-vertex
connected.

For paths a simple O(m) solution exists.

For k-connected only solutions for small k are known.
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Dynamic Results

Dynamic k-vertex connectivity:

� undirected connectivity and 2-vertex connectivity in

Õ(1) time by Holm et al. ’00.

� undirected 3-vertex connectivity and 4-vertex

connectivity in Õ(n) time by Eppstein et al. ’97.

� directed 1-vertex connectivity, i.e., strong
connectivity in O(n1.575) time using the transitive
closure algorithm by Sankowski ’04.
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Static Results

Static k-vertex connectivity:

Complexity Author

Õ(nω + nkω) (undirected) Linial, Lovász and
Wigderson ’88

Õ(nω + nkω) Cheriyan and Reif ’92

O((k5/2 + n)m) Gabow ’00

O((k + n1/4)n3/4m) Gabow ’00

O((k5/2 + n)kn) (undirected) Gabow ’00

O((k + n1/4)kn7/4) (undirected) Gabow ’00
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Our Results

Our results:

� O(n1.495) time algorithm for the paths
problem, i.e., s, t-vertex connectivity,

� O(n1.495) time algorithm for the maximum
matching problem and for the matrix rank
problem,

� O(n1.575 + nk2) time algorithm for the directed
k-vertex connectivity,

� these solutions break the input size bound.
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Simple Solution

In the algorithm we maintain explicitly the
current set of vertex disjoint paths P.

The insertion of an edge e can be realized as
follows:
� insert e into the graph,

� if there exists an s, t augmenting path p,
� augment P with the path p.

After insertion or removal of the edge the number of
vertex disjoint paths can change by at most one.
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Simple Solution

The removal of an edge e can be handled
similarly:
� remove e from the graph,

� remove from P a path containing e if there is
any,

� if there exists an s, t augmenting path p,
� augment P with the path p.

The augmenting path can be found in O(m)
time, so we get an O(m) update time algorithm.

We have to beat the input size bound - O(m).



- p. 11/52

Outline

� Introduction
� Simple Solution

� Dynamic Cycle Cover
� Dynamic s, t-Vertex Connectivity

� Vertex Connectivity and Maximum
Matchings

� Dynamic Matrix Rank

� Static k-Vertex Connectivity

� Dynamic k-Vertex Connectivity

� Conclusions and Open Problems



- p. 12/52

Dynamic Perfect Cycle Cover

A cycle cover in a graph G is a set of cycles C such that
every vertex belongs to at most one cycle c ∈ C.

A size of a cycle cover C is defined as |C| = ∑c∈C |c|.

A perfect cycle cover is a cycle cover of size |V|.

An algorithm for dynamic perfect cycle cover problem
maintains the graph G = (V, E) and supports the
following operations:

� insert(e) – inserts the edge e,

� delete(e) – if G − e has a perfect cycle cover then
deletes the edge e otherwise returns FALIURE.
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Perfect Covers = Perfect Matchings

For each vertex we create two copies:

� one for in-edges,

� one for out-edges.
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Perfect Covers = Perfect Matchings

For each vertex we create two copies:

� one for in-edges,

� one for out-edges.
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Dynamic Perfect Cycle Cover

Theorem 1 (Sankowski ’04) The problems of
dynamic cycle cover can be solved with the following
costs:
� initialization – O(nω) time,

� insert and delete – O(n1.495) time
(worst-case).

The algorithm is randomized.

O(nω) is the matrix multiplication time –
currently ω < 2.38.
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Dynamic s, t-Vertex Connectivity

In order to check if there are ≥ 2 s, t-paths:



- p. 16/52

Dynamic s, t-Vertex Connectivity

In order to check if there are ≥ 2 s, t-paths:



- p. 16/52

Dynamic s, t-Vertex Connectivity

In order to check if there are ≥ 2 s, t-paths:



- p. 16/52

Dynamic s, t-Vertex Connectivity

In order to check if there are ≥ 2 s, t-paths:



- p. 16/52

Dynamic s, t-Vertex Connectivity

In order to check if there are ≥ 2 s, t-paths:
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Dynamic s, t-Vertex Connectivity

In order to dynamically compute s, t-vertex
connectivity, we:
� copy n times the vertices s and t,

� add self-loops to all other vertices,

� add n edges from t to s.

When the s, t-vertex connectivity changes we need to
add/delete self loops to the pair of copies of s and t.

Theorem 2 There exists an algorithm for the problems of
computing the number of vertex disjoint s, t-paths that
supports updates in O(n1.495) time (worst-case).
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Dynamic Maximum Matchings

Theorem 3 There exists an algorithm for the
problems of computing the size of the maximum
matching that supports updates in O(n1.495) time
(worst-case).
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Dynamic Matrix Rank

We have reduced the problem of dynamically
computing the maximum matching to the
problem of maintaining the perfect matchings.

We can do the same with the matrices, i.e., we
enhance any dynamic algorithm that maintains
the information on non-singular matrices to
support also singular matrices.

A black-box reduction without loss of efficiency,
only at the cost of randomization.
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Dynamic Matrix Functions

We want to construct an algorithms that for a
given n × n matrix A supports the following
operations:

� update(i, j, x): changes the element Ai,j to x,

� determinant: returns det(A) the
determinant of A,

� rank: returns rank(A) the rank of A.

If the algorithm supports only non-singular
matrices we cannot solve the rank problem.
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

2 2 2



 det(A) = −4
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





2 1 2

2 2 2

1 2 2



 det(A) = 2
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

0 2 2



 det(A) = 0
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Dynamic Matrix Functions

We are given the matrix:

A =





1 1 2

1 2 2

2 2 2



 det(A) = −2

After the change:

A =





1 1 2

0 2 2

0 2 2



 det(A) = 0
Algorithm returns
FALIURE.
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Dynamic Matrix Functions

Theorem 4 (Sankowski ’04) The problem of dynamic
matrix determinant with non-singular updates can be
solved with the costs:
� initialization – O(nω) time,

� update – O(n1.495) time (worst-case).

Theorem 5 (Frandsen and Frandsen 2006) The problem
of dynamic matrix rank can be solved with the costs:
� initialization – O(nω) time,

� update – O(n1.595) time (worst-case).

A special more complicated solution.
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Determinant = Cycle Cover

Consider the adjacency matrix of the graph:

G

⇒

A(G)















0 0 0 0 0 x1,6

x2,1 0 0 0 0 0

0 x3,2 0 0 x3,5 0

0 0 x4,3 x4,4 0 0

0 0 x5,3 x5,4 0 0

0 x6,2 0 0 x6,5 0


















- p. 25/52

Determinant = Cycle Cover

Compute the determinant of the adjacency matrix:

G

⇒

A(G)

det(A(G)) =

= x2,1x1,6x6,2x3,5x5,4x4,3 +

− x2,1x1,6x6,2x3,5x5,3x4,4 +

− x2,1x1,6x6,5x5,4x4,3x3,2.
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Compute the determinant of the adjacency matrix:

G

⇒

A(G)

det(A(G)) =

= x2,1x1,6x6,2x3,5x5,4x4,3 +

− x2,1x1,6x6,2x3,5x5,3x4,4 +

− x2,1x1,6x6,5x5,4x4,3x3,2.



- p. 26/52

Determinant = Cycle Cover

The determinant of an n × n matrix A is given
as:

det(A(G)) = ∑
p∈Πn

σ(p)
n

∏
i=0

ai,pi
.

In each product along p for each vertex i we
choose an edge (i, pi).

The cycles of p give perfect cycle covers of G.
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Dynamic Matrix Rank

Let A be an n × n matrix over the field F. Let X̃ and Ỹ
be symbolic matrices of size n × n. Consider the matrix

Ã(k) :=





A X̃ 0

Ỹ 0 I

0 I I(k)



 ,

where I(k) = diag(1, . . . , 1
︸ ︷︷ ︸

k times

, 0, . . . , 0
︸ ︷︷ ︸

n−k times

).

Lemma 6 The matrix A(k) is non-singular if and only if
rank(A) ≥ n − k.
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Dynamic Matrix Rank

Let G(A) be a graph corresponding to the
symbolic matrix A and let C be a maximum size
cycle cover in G(A), then:

rank(A) = |C|.

When A is not symbolic this may be not true.

Can be solved with

some randomization.

Ã(k) :=







A X̃ 0

Ỹ 0 I

0 I I(k)
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Dynamic Matrix Rank

Consider the matrix A(k) and the corresponding graph:

Ã(n)





A X̃ 0

Ỹ 0 I

0 I I(n)





⇒

G(Ã(k))
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Dynamic Matrix Rank

Consider the matrix A(k) and the corresponding graph:

Ã(n)





A X̃ 0

Ỹ 0 I

0 I I(n)





⇒

G(Ã(k))
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Dynamic Matrix Rank

Consider the matrix A(k) and the corresponding graph:

Ã(n−1)





A X̃ 0

Ỹ 0 I

0 I I(n−1)





⇒

G(Ã(k))
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Dynamic Matrix Rank

Consider the matrix A(k) and the corresponding graph:

Ã(1)





A X̃ 0

Ỹ 0 I

0 I I(1)





⇒

G(Ã(k))
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Dynamic Matrix Rank

Consider the matrix A(k) and the corresponding graph:

Ã(0)





A X̃ 0

Ỹ 0 I

0 I I(0)





⇒

G(Ã(k))
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Dynamic Transitive Closure

Theorem 7

Dynamic Matrix Inverse

Update O(nα) operations

Query O(nβ) operations

assumes non-singularity ⇒

⇒ Dynamic Matrix Rank

Update O(nα) time

Query O(nβ) time

randomized
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Static Vertex Connectivity

Let us denote by Γ(v) the set {w : (v, w) ∈ E}.

A symbolic Laplacian matrix of the directed graph

G = (V, E) is the n × n matrix Ã such that

Ãi,j =







zi if i = j,

xi,j if (vi, vj) ∈ E,

0 otherwise,

where xi,j are unique variables corresponding to
the edges of G and zi are unique variables
corresponding to the vertices of G.
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Static Vertex Connectivity

We say that X, Y ⊆ V, |X| = |Y|, are k-linked if
there exist a set of vertex disjoint paths joining k
vertices from X with k vertices from Y.

Theorem 8 (Cheriyan and Reif ’92) Let Ã be the
symbolic Laplacian matrix of a graph G. Let
X, Y ⊆ V be two k element sets of vertices. Then

det(ÃX,Y) 6= 0 iff X and Y are k-linked.

In the undirected case proven by Linial, Lovász and
Wigderson ’88
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Static Vertex Connectivity

In order to check if X = {v5, v6} is k-linked to
Y = {v2, v3} we compute det(ÃX,Y).

G

⇒

Ã(G)















z1 0 0 0 0 x1,6

x2,1 z2 0 0 0 0

0 x3,2 z3 0 x3,5 0

0 0 x4,3 z4 0 0

0 0 x5,3 x5,4 z5 0

0 x6,2 0 0 x6,5 z6
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Static Vertex Connectivity

In order to check if X = {v5, v6} is k-linked to
Y = {v2, v3} we compute det(ÃX,Y).

G

⇐

Ã(G)X,Y















z1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 x4,3 z4 0 0

0 0 x5,3 x5,4 0 0

0 x6,2 0 0 0 0
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Static Vertex Connectivity

In order to check if X = {v5, v6} is k-linked to
Y = {v2, v3} we compute det(ÃX,Y).

G

det(Ã(G)X,Y) =

− z1x6,2x5,4x4,3 +

+ z1z4x6,2x5,3.
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Static Vertex Connectivity

The theorem together with Zippel-Schwartz
Lemma implies that we can test whether X and
Y are k-linked in O(nω) time.

In the k connectivity test we perform many
k-link tests. We can use the following.

Lemma 9
det(AX,Y) 6= 0 iff det((A−1)X,Y) 6= 0.

Thus we can compute the inverse once and
than test only if k × k size matrices are
non-singular.
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Static Vertex Connectivity

Lemma 10 If p(x1, . . . , xm) is a non-zero
polynomial of degree d with coefficients in a field F,
then the probability that p evaluates to 0 on a
random element (s1, s2, . . . , sm) ∈ Fm is at most
d/|F|. We call such event false zero.

Corollary 11 If a polynomial of degree n is
evaluated on random values modulo prime number p
of length (1 + c) log n, then the probability of false

zero is at most 1
nc , for any c > 0.
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Static Vertex Connectivity

In the algorithm we use the following
procedure to test if the given vertex v can be
reached with k paths from all other vertices.

Algorithm 12 TEST-ROOT-k(z, G):
� let Y be the set of k predecessors of z,

� for all v ∈ V − Y do
� let X be the set of k successors of v,
� (we test if X and Y are k-linked)
� if rank((A−1)X,Y) < k then return FALIURE,

� return SUCCESS.
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Static Vertex Connectivity

Algorithm 13 TEST-k-CONNECTIVITY(G):
� choose a random prime p ∈ [n6, n7],

� substitute random elements from Zp into Ã obtaining A,

� if A is singular then return FALIURE,

� compute A−1 and let k′ = ⌈ log n
log n−log k⌉,

� for i = 1 to k′ do
� choose a random vertex yi ∈ V,
� call TEST-ROOT-k(yi, G) and

TEST-ROOT-k(yi, rev(G)),
� if either of the calls fails return FAILURE,

� return SUCCESS.
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Static Vertex Connectivity

If the graph is k connected:
� then every pair of k element subsets is k-linked,

� thus the algorithm will succeed w.h.p when the
graph is k connected.

If the graph is not k connected:
� then there exists a separator S ⊆ V od size k − 1,

� the probability that from a set of k′ random vertices
one is /∈ S is

1 −

(
k − 1

n

)⌈
log n

log n−log k ⌉

≈ 1 −

(
k

n

)log n
k

n

= 1 −
1

n
.
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Static Vertex Connectivity

Lemma 14 (Cheriyan and Reif ’92) If G is
k-connected than TEST-k-CONNECTIVITY return
SUCCESS with probability > 1 − 1

n otherwise

FAILURE is returned with probability > 1 − 1
n .

The algorithm works in time

O(nω + log n
log n−log k · (n − k) · kω) = O(nω + nkω).
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Dynamic Vertex Connectivity

In the static algorithm we use only k-linkage
tests.

In the dynamic algorithm we can fix these tests
in the beginning and use the same test during
the whole run of the algorithm.

� the choice is independent from the graph.

However, we need to do many k-linkage tests at
once.
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Dynamic Vertex Connectivity

Theorem 15 (Sherman and Morrison ’49) The problem
of dynamic matrix inverse with non-singular updates can
be solved with the costs:
� initialization – O(nω) time,

� update – O(n2) time (worst-case),

� query – O(1) time, i.e., the inverse is maintained
explicitly.

The Laplacian matrix is non-singular.

Thus we can easily obtain an O(n2 + nkω) time
algorithm.
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Dynamic Vertex Connectivity

Let X̃ be an n × k symbolic matrix and Ỹ be a

k × n symbolic matrix and let Ã be the symbolic
Laplacian matrix for G.

Consider the (n + 2k)× (n + 2k) matrix Ã(k,d)

defined as follows

Ã(k,d) :=





Ã X̃ 0

Ỹ 0 I

0 I I(d)



 .
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Dynamic Vertex Connectivity

Ã(k,d) :=





Ã X̃ 0

Ỹ 0 I

0 I I(d)



 .

Lemma 16 Let P, Q ⊆ V and |P| = |Q| = k. Then
the sets P and Q are (k − d)-linked iff the matrix
(

Ã(k,d)
)−1

P,Q
is non-singular.

� d controls the rank of submatrices,
� and allows the control of connectivity.



- p. 46/52

Dynamic Vertex Connectivity

A rank one update is an update of the form
A := A + abT, where a and b are n dimensional
vectors.

Lemma 17 There exists an algorithm for
dynamically maintaining the inverse of A that
supports rank one updates in O(n2) time and queries
in O(1) time. For each R, C ⊆ {1, . . . , n}, where
|R| = |C| = k, the algorithm maintains determinant
of (A−1)R,C with additional cost of O(k2) time per
update.
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Dynamic Vertex Connectivity

The matrix A after the rank one update equals:

A′ = A
(

I + A−1abT
)

.

The inverse of A is recomputed by:

A′−1 =
(

I + A−1abT
)−1

A−1.

This takes O(n2) time. We can recompute the
submatrix:

(A′−1)R,C =
((

I + A−1abT
)−1

A−1
)

R,C
,

. . .
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Dynamic Vertex Connectivity

Lemma 18 There exists an algorithm for dynamically
maintaining the inverse of A that supports element updates
in O(n1.575) time and queries in O(n0.575) time. For each
R, C ⊆ {1, . . . , n}, where |R| = |C| = k, the algorithm
maintains determinant of (A−1)R,C with additional cost of
O(k2) time per update.

⇓

Theorem 19 There exists an algorithm for dynamically
testing if the graph is k vertex connected that supports edge

updates in Õ(n1.575 + nk2) time and queries in O(1) time.
The algorithm is randomized.
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Conclusions and Open Problem

� Can the static vertex connectivity be solved in
matrix multiplication time? Current time:

O(nω + nkω).

� We can solve a dynamic ”flow-like” problem,
i.e., s, t-vertex connectivity in subquadratic
O(n1.495) time.

� Can the same be done for the maximum
flow problem? Only unit edge weights?

� For unit edge weights a O(m) time solution
exists.
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Conclusions and Open Problems

� We can solve the dynamic maximum matching
problem in subquadratic O(n1.495) time.
� What about the weighted case? Maximum

weighted matching? Maximum weight
perfect matching?

� We can solve maximum weighted bipartite
matching problem with integer edge weights
from the set 1, . . . , W in O(W2.495n1.495) time.
� The used unfolded graph technique works

only in the case of bipartite graphs and
maximum weighted matchings.
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Conclusions and Open Problems

� We can solve the dynamic matrix rank
problem and other matrix problems in
subquadratic O(n1.495) time.

� What about the characteristic polynomial?
� (Recently: Õ(n2) time in symmetric case.)

� We can solve the dynamic directed k-vertex
connectivity in O(n1.575 + nk2) time.
� Static time is O(nω + nkω). In dynamic case

it should be O(n1.575 + nk1.575)?
� What about k-edge connectivity? Line

graph?
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