

(日) (四) (三) (三)

An Efficient Cost Sharing Mechanism for the Prize-Collecting Steiner Forest Problem

Guido Schäfer Institute of Mathematics, TU Berlin, Germany

Workshop on Flexible Network Design Bertinoro, October 2–6, 2006

joint work with: A. Gupta, J. Könemann, S. Leonardi, R. Ravi

Outline

- Part I: Cost Sharing Mechanisms
 - cost sharing model, definitions, objectives
 - state of affairs, new trade-offs
 - tricks of the trade
- Part II: Prize-Collecting Steiner Forest
 - primal-dual algorithm PCSF
 - cross-monotonicity and budget balance
 - general reduction technique
- Conclusions and Open Problems

> < 同 > < 回 > < 回 > <</p>

Part I

Cost Sharing Mechanisms

Cost Sharing Model

Service provider: offers some service

- set U of n potential users, interested in service
- ▶ cost function $C : 2^U \to \mathbb{R}^+$ C(S) =cost to serve user-set $S \subseteq U$
- determines who receives service and distributes cost

Every user $i \in U$:

- ▶ has a (private) utility $u_i \ge 0$ for receiving the service
- ► announces bid b_i ≥ 0, the maximum amount he is willing to pay for the service

(日) (四) (日) (日) (日) (日)

Cost Sharing Model

Service provider: offers some service

- set U of n potential users, interested in service
- ▶ cost function $C : 2^U \to \mathbb{R}^+$ C(S) =cost to serve user-set $S \subseteq U$
- determines who receives service and distributes cost

Every user $i \in U$:

- ▶ has a (private) utility $u_i \ge 0$ for receiving the service
- ► announces bid b_i ≥ 0, the maximum amount he is willing to pay for the service

(日) (四) (日) (日) (日) (日)

Cost Sharing Mechanism

Cost sharing mechanism M:

- collects all bids $\{b_i\}_{i \in U}$ from users
- decides a set $S^M \subseteq U$ of users that receive service
- determines a payment p_i for every user $i \in S^M$

Properties:

- 1. user is not paid for receiving service
- 2. user is charged at most his bid if he receives service, zero otherwise
- 3. user receives service if his bid is large enough

・ロン・(部)・・ヨン・ヨン 三連

Cost Sharing Mechanism

Cost sharing mechanism M:

- collects all bids $\{b_i\}_{i \in U}$ from users
- decides a set $S^M \subseteq U$ of users that receive service
- determines a payment p_i for every user $i \in S^M$

Properties:

- 1. user is not paid for receiving service
- 2. user is charged at most his bid if he receives service, zero otherwise
- 3. user receives service if his bid is large enough

・ロン・(部)・・ヨン・ヨン 三連

Budget Balance

 β -budget balance: total payment of users in S^M approximates overall cost

$$m{C}(m{S}^M) \leq \sum_{i \in m{S}^M} m{
ho}_i \leq m{eta} \cdot m{C}(m{S}^M), \quad m{eta} \geq 1$$

Benefit: user *i* receives benefit $u_i - p_i$ if served, zero otherwise

Strategic behaviour: every user $i \in U$ acts selfishly and attempts to maximize his benefit (using his bid)

Strategyproofness: benefit of every user $i \in U$ is maximized if he bids truthfully, i.e., bidding $b_i = u_i$ is a dominant strategy for every user $i \in U$

Group-strategyproofness: same holds true even if users form coalitions and coordinate their biddings

(日)

Benefit: user *i* receives benefit $u_i - p_i$ if served, zero otherwise

Strategic behaviour: every user $i \in U$ acts selfishly and attempts to maximize his benefit (using his bid)

Strategyproofness: benefit of every user $i \in U$ is maximized if he bids truthfully, i.e., bidding $b_i = u_i$ is a dominant strategy for every user $i \in U$

Group-strategyproofness: same holds true even if users form coalitions and coordinate their biddings

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Benefit: user *i* receives benefit $u_i - p_i$ if served, zero otherwise

Strategic behaviour: every user $i \in U$ acts selfishly and attempts to maximize his benefit (using his bid)

Strategyproofness: benefit of every user $i \in U$ is maximized if he bids truthfully, i.e., bidding $b_i = u_i$ is a dominant strategy for every user $i \in U$

Group-strategyproofness: same holds true even if users form coalitions and coordinate their biddings

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Benefit: user *i* receives benefit $u_i - p_i$ if served, zero otherwise

Strategic behaviour: every user $i \in U$ acts selfishly and attempts to maximize his benefit (using his bid)

Strategyproofness: benefit of every user $i \in U$ is maximized if he bids truthfully, i.e., bidding $b_i = u_i$ is a dominant strategy for every user $i \in U$

Group-strategyproofness: same holds true even if users form coalitions and coordinate their biddings

・ロン・(部)・・ヨン・ヨン 三連

Efficiency

Social welfare: for a set $S \subseteq U$, define

$$W(S) := \sum_{i \in S} u_i - C(S)$$

 α -efficiency: assuming truthfull bidding, social welfare of S^M approximates maximum social welfare

$$W(S^M) \ge \frac{1}{\alpha} \cdot W(S) \quad \forall S \subseteq U, \quad \alpha \ge 1$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Efficiency

Social welfare: for a set $S \subseteq U$, define

$$W(S) := \sum_{i \in S} u_i - C(S)$$

 α -efficiency: assuming truthfull bidding, social welfare of S^M approximates maximum social welfare

$$W(S^M) \ge \frac{1}{lpha} \cdot W(S) \quad \forall S \subseteq U, \quad lpha \ge 1$$

・ロット (雪) (日) (日) 日

Exact: truthfullness + budget balance + efficiency = impossible [Green et al. '76], [Roberts '79]

Approximate: truthfullness + approximate budget balance + approximate efficiency = impossible [Feigenbaum et al. '(

Remark: impossibility results hold even for strategyproofness and simple cost functions

Consequence: researchers concentrated on proper subsets of these objectives

(日) (四) (日) (日) (日) (日)

Exact: truthfullness + budget balance + efficiency = impossible [Green et al. '76], [Roberts '79]

Approximate: truthfullness + approximate budget balance + approximate efficiency = impossible [Feigenbaum et al. '03]

Remark: impossibility results hold even for strategyproofness and simple cost functions

Consequence: researchers concentrated on proper subsets of these objectives

(日) (四) (日) (日) (日) (日)

Exact: truthfullness + budget balance + efficiency = impossible [Green et al. '76], [Roberts '79]

Approximate: truthfullness + approximate budget balance + approximate efficiency

= impossible

[Feigenbaum et al. '03]

・ ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Remark: impossibility results hold even for strategyproofness and simple cost functions

Consequence: researchers concentrated on proper subsets of these objectives

Exact: truthfullness + budget balance + efficiency = impossible [Green et al. '76], [Roberts '79]

Approximate: truthfullness + approximate budget balance + approximate efficiency

= impossible

[Feigenbaum et al. '03]

▲口 > ▲圖 > ▲ 国 > ▲ 国 > ― 国 ―

Remark: impossibility results hold even for strategyproofness and simple cost functions

Consequence: researchers concentrated on proper subsets of these objectives

Cost Sharing Mechanisms

Authors	Problem	β
[Moulin, Shenker '01]	submodular cost	1
[Jain, Vazirani '01]	MST	1
	Steiner tree and TSP	2
[Devanur, Mihail, Vazirani '03]	set cover	log n
(strategyproof only)	facility location	1.61
[Pal, Tardos '03]	facility location	3
	SRoB	15
[Leonardi, S. '03], [Gupta et al. '03]	SRoB	4
[Leonardi, S. '03]	CFL	30
[Könemann, Leonardi, S. '05]	Steiner forest	2
Lower bo	ounds	
[Immorlica, Mahdian, Mirrokni '05]	edge cover	2
	facility location	3
	vertex cover	n ^{1/3}
	set cover	n
[Könemann, Leonardi, S., van Zwam '05]	Steiner tree	2

-2

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ -

Cost Sharing Mechanisms	State of Affairs	Tricks of the Trade
	0000	

Social cost: for a set $S \subseteq U$, define

$$\Pi(S) := \sum_{i \notin S} u_i + C(S)$$
$$= \sum_{i \in U} u_i - \sum_{i \in S} u_i + C(S) = -W(S) + \sum_{i \in U} u_i$$

Thus: S maximizes W(S) iff S minimizes $\Pi(S)$

 α -approximate: approximate minimimum social cost

$$\Pi(S^M) \le \alpha \cdot \Pi(S) \quad \forall S \subseteq U, \quad \alpha \ge 1$$

[Roughgarden and Sundararajan '06]

Cost Sharing Mechanisms	State of Affairs	Tricks of the Trade
	0000	

Social cost: for a set $S \subseteq U$, define

$$\Pi(S) := \sum_{i \notin S} u_i + C(S)$$
$$= \sum_{i \in U} u_i - \sum_{i \in S} u_i + C(S) = -W(S) + \sum_{i \in U} u_i$$

Thus: S maximizes W(S) iff S minimizes $\Pi(S)$

 α -approximate: approximate minimimum social cost

$$\Pi(S^M) \le \alpha \cdot \Pi(S) \quad \forall S \subseteq U, \quad \alpha \ge 1$$

[Roughgarden and Sundararajan '06]

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ → 三日

Cost Sharing Mechanisms	State of Affairs	Tricks of the Trade
	0000	

Social cost: for a set $S \subseteq U$, define

$$\Pi(S) := \sum_{i \notin S} u_i + C(S)$$
$$= \sum_{i \in U} u_i - \sum_{i \in S} u_i + C(S) = -W(S) + \sum_{i \in U} u_i$$

Thus: S maximizes W(S) iff S minimizes $\Pi(S)$

 α -approximate: approximate minimimum social cost

$$\Pi(S^{\mathcal{M}}) \le \alpha \cdot \Pi(S) \quad \forall S \subseteq U, \quad \alpha \ge 1$$

[Roughgarden and Sundararajan '06]

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Cost Sharing Mechanisms	State of Affairs	Tricks of the Trade
	0000	

Social cost: for a set $S \subseteq U$, define

$$\Pi(S) := \sum_{i \notin S} u_i + C(S)$$
$$= \sum_{i \in U} u_i - \sum_{i \in S} u_i + C(S) = -W(S) + \sum_{i \in U} u_i$$

Thus: S maximizes W(S) iff S minimizes $\Pi(S)$

 α -approximate: approximate minimimum social cost

$$\Pi(\mathcal{S}^{\mathcal{M}}) \leq \alpha \cdot \Pi(\mathcal{S}) \quad \forall \mathcal{S} \subseteq \mathcal{U}, \quad \alpha \geq 1$$

[Roughgarden and Sundararajan '06]

Social cost: for a set $S \subseteq U$, define

$$\Pi(S) := \sum_{i \notin S} u_i + C(S)$$
$$= \sum_{i \in U} u_i - \sum_{i \in S} u_i + C(S) = -W(S) + \sum_{i \in U} u_i$$

Thus: S maximizes W(S) iff S minimizes $\Pi(S)$

 α -approximate: approximate minimimum social cost

$$\Pi(\mathbf{S}^{M}) \leq \alpha \cdot \Pi(\mathbf{S}) \quad \forall \mathbf{S} \subseteq \mathbf{U}, \quad \alpha \geq 1$$

[Roughgarden and Sundararajan '06]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Cost Sharing Mechanisms

Authors	Problem	β	α
[Roughgarden, Sundararajan '06]	submodular cost	1	$\Theta(\log n)$
	Steiner tree	2	$\Theta(\log^2 n)$
[Chawla, Roughgarden, Sundarara- jan '06]	Steiner forest	2	$\Theta(\log^2 n)$
[Roughgarden, Sundararajan ?]	facility location	3	$\Theta(\log n)$
	SRoB	4	$\Theta(\log^2 n)$
[Gupta et al. '07]	prize-collecting Steiner forest	3	$\Theta(\log^2 n)$

-20

ヘロト 人間 とくほ とくほ とう

How to achieve

β -budget balance?

 $\left(C(S) \leq \sum_{i \in S^M} p_i \leq \beta \cdot C(S) \right)$

... use techniques from approximation algorithms

3

< ロ > < 同 > < 回 > < 回 > < □ > <

How to achieve

group-strategyproofness?

(not everybody in the coalition is better off by misreporting his utility)

3

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Cross-Monotonic Cost Sharing Method

Cost sharing method: function $\xi : U \times 2^U \to \mathbb{R}^+$ $\xi(i, S) = \text{cost share}$ of user *i* with respect to set $S \subseteq U$

 β -budget balance:

$$C(S) \le \sum_{i \in S} \xi(i, S) \le \beta \cdot C(S) \quad \forall S \subseteq U$$

Cross-monotonicity: cost share of user *i* does not increase as additional users join the game:

 $\forall S' \subseteq S, \ \forall i \in S': \quad \xi(i, S') \ge \xi(i, S)$

・ロット (雪) (日) (日) 日

Cross-Monotonic Cost Sharing Method

Cost sharing method: function $\xi : U \times 2^U \to \mathbb{R}^+$ $\xi(i, S) = \text{cost share}$ of user *i* with respect to set $S \subseteq U$

 β -budget balance:

$$C(S) \le \sum_{i \in S} \xi(i, S) \le \beta \cdot C(S) \quad \forall S \subseteq U$$

Cross-monotonicity: cost share of user *i* does not increase as additional users join the game:

$$\forall \mathbf{S}' \subseteq \mathbf{S}, \ \forall i \in \mathbf{S}': \quad \xi(i, \mathbf{S}') \ge \xi(i, \mathbf{S})$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Moulin Mechanism

Given: cross-monotonic and β -budget balanced cost sharing method ξ

Moulin mechanism $M(\xi)$:

- 1: Initialize: $S^M \leftarrow U$
- 2: If for each user $i \in S^M$: $\xi(i, S^M) \le b_i$ then STOP
- 3: Otherwise, remove from S^M all users with $\xi(i, S^M) > b_i$ and repeat

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced [Moulin, Shenker '01], [Jain, Vazirani '01]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

How to achieve

α -approximability?

$$\left(\Pi(\mathbf{S}^{M}) \leq \frac{1}{lpha} \cdot \Pi(\mathbf{S}) \quad \forall \mathbf{S} \subseteq \mathbf{U}\right)$$

3

(日)

Given: arbitrary order σ on users in *U*

Order subset $S \subseteq U$ according to σ :

 $\mathbf{S} := \{i_1, \dots, i_{|\mathbf{S}|}\}$

Let $S_j :=$ first *j* users of S

 α -summability: ξ is α -summable if

$$\forall \sigma, \forall S \subseteq U: \quad \sum_{j=1}^{|S|} \xi(j, S_j) \leq \alpha \cdot C(S)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Given: arbitrary order σ on users in U

Order subset $S \subseteq U$ according to σ :

$$\mathsf{S} := \{i_1, \ldots, i_{|\mathsf{S}|}\}$$

Let $S_j :=$ first *j* users of *S*

 α -summability: ξ is α -summable if

$$\forall \sigma, \forall S \subseteq U: \quad \sum_{j=1}^{|S|} \xi(i_j, S_j) \leq \alpha \cdot C(S)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ◇ ◇ ◇

Given: arbitrary order σ on users in U

Order subset $S \subseteq U$ according to σ :

$$\mathsf{S} := \{i_1, \dots, i_{|\mathsf{S}|}\}$$

Let $S_j :=$ first *j* users of S

 α -summability: ξ is α -summable if

$$\forall \sigma, \forall S \subseteq U: \quad \sum_{j=1}^{|S|} \xi(j, S_j) \leq \alpha \cdot C(S)$$

-

ヘロト 人間 ト イヨト イヨト

Given: arbitrary order σ on users in U

Order subset $S \subseteq U$ according to σ :

$$\mathsf{S} := \{i_1, \dots, i_{|\mathsf{S}|}\}$$

Let $S_j :=$ first *j* users of *S*

 α -summability: ξ is α -summable if

$$\forall \sigma, \forall S \subseteq U: \quad \sum_{j=1}^{|S|} \xi(i_j, S_j) \leq \alpha \cdot C(S)$$

-

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・
Summability implies Approximability

Given: cross-monotonic cost sharing method ξ that satisfies β -budget balance and α -summability

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced and $(\alpha + \beta)$ -approximate

[Roughgarden, Sundararajan '06]

Summability implies Approximability

Given: cross-monotonic cost sharing method ξ that satisfies β -budget balance and α -summability

Thm: Moulin mechanism $M(\xi)$ is a group-strategyproof cost sharing mechanism that is β -budget balanced and $(\alpha + \beta)$ -approximate

[Roughgarden, Sundararajan '06]

Part II

Prize-Collecting Steiner Forest Problem

Guido Schäfer

Cost Sharing Mechanism for PCSF

20

-2

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Prize-Collecting Steiner Forest Problem (PCSF)

Given:

- network N = (V, E, c) with edge costs $c : E \to \mathbb{R}^+$
- ▶ set of *n* terminal pairs $R = \{(s_1, t_1), \dots, (s_n, t_n)\} \subseteq V \times V$
- ▶ penalty $\pi_i \ge 0$ for every pair $(s_i, t_i) \in R$.

Feasible solution: forest *F* and subset $Q \subseteq R$ such that for all $(s_i, t_i) \in R$: either s_i, t_i are connected in *F*, or $(s_i, t_i) \in Q$

Objective: compute feasible solution (F, Q) such that $c(F) + \pi(Q)$ is minimized

Prize-Collecting Steiner Forest Problem (PCSF)

Given:

- network N = (V, E, c) with edge costs $c : E \to \mathbb{R}^+$
- ▶ set of *n* terminal pairs $R = \{(s_1, t_1), \dots, (s_n, t_n)\} \subseteq V \times V$
- ▶ penalty $\pi_i \ge 0$ for every pair $(s_i, t_i) \in R$.

Feasible solution: forest *F* and subset $Q \subseteq R$ such that for all $(s_i, t_i) \in R$: either s_i, t_i are connected in *F*, or $(s_i, t_i) \in Q$

Objective: compute feasible solution (F, Q) such that $c(F) + \pi(Q)$ is minimized

Prize-Collecting Steiner Forest Problem (PCSF)

Given:

- network N = (V, E, c) with edge costs $c : E \to \mathbb{R}^+$
- ▶ set of *n* terminal pairs $R = \{(s_1, t_1), \dots, (s_n, t_n)\} \subseteq V \times V$
- ▶ penalty $\pi_i \ge 0$ for every pair $(s_i, t_i) \in R$.

Feasible solution: forest *F* and subset $Q \subseteq R$ such that for all $(s_i, t_i) \in R$: either s_i, t_i are connected in *F*, or $(s_i, t_i) \in Q$

Objective: compute feasible solution (F, Q) such that $c(F) + \pi(Q)$ is minimized

• every user is associated with a terminal pair: U = R

- user i wants to connect s_i and t_i
- ► service provider can either build this connection himself, or buy connection at a price of π_i from another provider
- cost function C(S) for user set S ⊆ U is given by the cost of an optimal solution for PCSF(S)

- every user is associated with a terminal pair: U = R
- user i wants to connect s_i and t_i
- ► service provider can either build this connection himself, or buy connection at a price of π_i from another provider
- cost function C(S) for user set S ⊆ U is given by the cost of an optimal solution for PCSF(S)

- every user is associated with a terminal pair: U = R
- user *i* wants to connect s_i and t_i
- service provider can either build this connection himself, or buy connection at a price of π_i from another provider
- cost function C(S) for user set S ⊆ U is given by the cost of an optimal solution for PCSF(S)

- every user is associated with a terminal pair: U = R
- user i wants to connect s_i and t_i
- service provider can either build this connection himself, or buy connection at a price of π_i from another provider
- cost function C(S) for user set S ⊆ U is given by the cost of an optimal solution for PCSF(S)

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Our Results

- cost sharing method ξ that is cross-monotonic and 3-budget balanced for PCSF
 Byproduct: simple primal-dual 3-approximate algorithm
- reduction technique that shows that Moulin mechanism M(ξ) is Θ(log² n)-approximate
- simple proof of O(log³ n)-summability for Steiner forest cost sharing method

joint work with: A. Gupta, J. Könemann, S. Leonardi, R. Ravi to appear in SODA 2007

LP Formulation

$$\begin{array}{ll} \min & \sum_{e \in E} c_e \cdot x_e + \sum_{(u,\bar{u}) \in R} \pi(u,\bar{u}) \cdot x_{u\bar{u}} \\ \text{s.t.} & \sum_{e \in \delta(S)} x_e + x_{u\bar{u}} \geq 1 \quad \forall S \in \mathscr{S}, \, \forall (u,\bar{u}) \odot S \\ & x_e \geq 0 \quad \forall e \in E \\ & x_{u\bar{u}} \geq 0 \quad \forall (u,\bar{u}) \in R \end{array}$$

 $\mathscr{S} =$ set of all Steiner cuts (separate at least one pair) $\delta(S) =$ edges that cross cut defined by S $(u, \bar{u}) \odot S =$ terminal pair (u, \bar{u}) separated by S

3

ヘロト 人間 ト ヘヨト ヘヨト

Dual LP

$$\begin{array}{ll} \max & \sum_{S \in \mathscr{S}} \sum_{(u,\bar{u}) \odot S} \xi_{S,u\bar{u}} \\ \text{s.t.} & \sum_{S: e \in \delta(S)} \sum_{(u,\bar{u}) \odot S} \xi_{S,u\bar{u}} \leq c_e \quad \forall e \in E \\ & \sum_{S: (u,\bar{u}) \odot S} \xi_{S,u\bar{u}} \leq \pi(u,\bar{u}) \quad \forall (u,\bar{u}) \in R \\ & \xi_{S,u\bar{u}} \geq 0 \quad \forall S \in \mathscr{S}, \forall (u,\bar{u}) \odot S \end{array}$$

 $\xi_{S,u\bar{u}} = \text{cost share that } (u, \bar{u}) \text{ receives from Steiner cut } S$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dual LP — Simplified

$$\begin{aligned} \xi_{u\bar{u}} &:= \sum_{\substack{\mathsf{S}: (u,\bar{u}) \odot \mathsf{S}}} \xi_{\mathsf{S}, u\bar{u}} \quad \text{(total cost share of } (u,\bar{u})\text{)} \\ y_{\mathsf{S}} &:= \sum_{(u,\bar{u}) \odot \mathsf{S}} \xi_{\mathsf{S}, u\bar{u}} \quad \text{(total dual of Steiner cut S)} \end{aligned}$$

$$\begin{array}{ll} \max & \sum_{S \in \mathscr{S}} y_S \\ \text{s.t.} & \sum_{S: e \in \delta(S)} y_S \leq c_e \quad \forall e \in E \\ & \xi_{u\bar{u}} \leq \pi(u,\bar{u}) \quad \forall (u,\bar{u}) \in R \\ & \xi_{S,u\bar{u}} \geq 0 \quad \forall S \in \mathscr{S}, \, \forall (u,\bar{u}) \odot S \end{array}$$

-20

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Visualizing the Dual

 dual y_S of Steiner cut S is visualized as moat around S of radius y_S

edge e is tight if

$$\sum_{\mathbf{S}: e \in \delta(S)} \mathbf{y}_{\mathbf{S}} = \mathbf{c}_{e}$$

< ロ > < 同 > < 回 > < 回 > < □ > <

 growth of moat corresponds to an increase in the dual value

Visualizing the Dual

- dual y_S of Steiner cut S is visualized as moat around S of radius y_S
- edge e is tight if

$$\sum_{S:e\in\delta(S)}y_S=c_e$$

< ロ > < 同 > < 回 > < 回 > < □ > <

 growth of moat corresponds to an increase in the dual value

Visualizing the Dual

- dual y_S of Steiner cut S is visualized as moat around S of radius y_S
- edge e is tight if

$$\sum_{\mathsf{S}: \mathsf{e} \in \delta(\mathsf{S})} \mathsf{y}_\mathsf{S} = \mathsf{c}_\mathsf{e}$$

< □ > < 同 > < 回 > < 回 > < 回 >

 growth of moat corresponds to an increase in the dual value

Activity Notion

Death time: let $d_G(u, \bar{u})$ be distance between u, \bar{u} in G

$$d(u,\bar{u}) := \frac{1}{2} d_{G}(u,\bar{u})$$

Activity: terminal $u \in R$ is active at time τ iff

$$\xi^{\tau}_{u\bar{u}} < \pi(u,\bar{u}) \quad \text{and} \quad \tau \leq \mathrm{d}(u,\bar{u}).$$

Call a moat active if it contains at least one active terminal

3

ヘロト 人間 ト ヘヨト ヘヨト

Activity Notion

Death time: let $d_G(u, \bar{u})$ be distance between u, \bar{u} in G

$$d(u,\bar{u}) := \frac{1}{2} d_{G}(u,\bar{u})$$

Activity: terminal $u \in R$ is active at time τ iff

$$\xi^{\tau}_{u\bar{u}} < \pi(u,\bar{u}) \quad \text{and} \quad \tau \leq \mathtt{d}(u,\bar{u}).$$

Call a moat active if it contains at least one active terminal

3

ヘロト 人間 ト ヘヨト ヘヨト

Activity Notion

Death time: let $d_G(u, \bar{u})$ be distance between u, \bar{u} in G

$$d(u,\bar{u}) := \frac{1}{2} d_{G}(u,\bar{u})$$

Activity: terminal $u \in R$ is active at time τ iff

$$\xi^{\tau}_{u\bar{u}} < \pi(u,\bar{u}) \quad \text{and} \quad \tau \leq \mathrm{d}(u,\bar{u}).$$

Call a moat active if it contains at least one active terminal

process over time

- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

- process over time
- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

- process over time
- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ► if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

- process over time
- at every time τ: grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ▶ if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

- process over time
- at every time τ: grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ► if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

- process over time
- at every time τ : grow all active moats uniformly
- share dual growth of a moat evenly among active terminals contained in it
- if two active moats collide: add all new tight edges on path between them to the forest F
- ► if a terminal pair (u, ū) becomes inactive since its cost share reaches its penalty, add (u, ū) to the set Q
- terminate if all moats are inactive

Illustration

<ロ> (四) (四) (三) (三) (三) (三)

Illustration

<ロ> (四) (四) (三) (三) (三) (三)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two Quick Proofs

Lem: ξ is cross-monotonic

Proof (idea): at every time τ and for any $S \subseteq S'$

- ▶ moat system wrt. S is a refinement of moat system wrt. S'
- cost share of u wrt. S is at least cost share of u wrt. S'

Lem: ξ is 3-budget balanced

Proof (idea):

- ► cost of solution is at most $2\sum y_S$ for Steiner forest and $\sum \xi_{u\bar{u}}$ for total penalty
- need to prove that $\sum y_S \leq C(S)$ (hard part)

Two Quick Proofs

Lem: ξ is cross-monotonic

Proof (idea): at every time τ and for any $S \subseteq S'$

- moat system wrt. S is a refinement of moat system wrt. S'
- cost share of u wrt. S is at least cost share of u wrt. S'

Lem: ξ is 3-budget balanced

Proof (idea):

- ► cost of solution is at most $2\sum y_S$ for Steiner forest and $\sum \xi_{u\bar{u}}$ for total penalty
- need to prove that $\sum y_S \leq C(S)$ (hard part)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Two Quick Proofs

Lem: ξ is cross-monotonic

Proof (idea): at every time τ and for any $S \subseteq S'$

- moat system wrt. S is a refinement of moat system wrt. S'
- cost share of u wrt. S is at least cost share of u wrt. S'

Lem: ξ is 3-budget balanced

Proof (idea):

- ► cost of solution is at most $2\sum y_S$ for Steiner forest and $\sum \xi_{u\bar{u}}$ for total penalty
- need to prove that $\sum y_S \leq C(S)$ (hard part)

Two Quick Proofs

Lem: ξ is cross-monotonic

Proof (idea): at every time τ and for any $S \subseteq S'$

- moat system wrt. S is a refinement of moat system wrt. S'
- cost share of u wrt. S is at least cost share of u wrt. S'
- **Lem:** ξ is 3-budget balanced

Proof (idea):

- ► cost of solution is at most $2\sum y_S$ for Steiner forest and $\sum \xi_{u\bar{u}}$ for total penalty
- need to prove that $\sum y_{S} \leq C(S)$ (hard part)

Partitioning Lemma

Given: cross-monotonic cost sharing method ξ on U that is β -budget balanced for C

Lem: If there is a partition $U = U_1 \cup U_2$ such that the Moulin mechanism $M(\xi)$ is α_i -approximate on U_i for all $i \in \{1,2\}$, then $M(\xi)$ is $(\alpha_1 + \alpha_2)\beta$ -approximate on U

Partitioning Lemma

Given: cross-monotonic cost sharing method ξ on U that is β -budget balanced for C

Lem: If there is a partition $U = U_1 \cup U_2$ such that the Moulin mechanism $M(\xi)$ is α_i -approximate on U_i for all $i \in \{1,2\}$, then $M(\xi)$ is $(\alpha_1 + \alpha_2)\beta$ -approximate on U

・ロット (雪) (日) (日) 日

U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

・ロット (雪) (日) (日) 日

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

3

ヘロト 人間 ト イヨト イヨト

 U_1 = set of all users *i* with $u_i \ge \pi_i$

Lem: (High-Utility Lemma): $M(\xi)$ is 1-approximate on U_1 .

Proof: By construction, $\xi(i, S) \le \pi_i \le u_i$ for all *i*, for all $S \subseteq U_1$. Thus, set S^M output by Moulin mechanism $M(\xi)$ is *U*. Moreover, *U* minimizes social cost.

3

ヘロト 人間 ト イヨト イヨト

U_2 = set of all users *i* with $u_i < \pi_i$

 $\xi' = \text{cross-monotonic cost sharing method for Steiner forest}$ problem

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

・ロト ・雪 ト ・ ヨ ト ・ ヨ

 U_2 = set of all users *i* with $u_i < \pi_i$

$\xi^\prime = {\rm cross}{\rm -monotonic\ cost\ sharing\ method\ for\ Steiner\ forest\ problem}$

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

 U_2 = set of all users *i* with $u_i < \pi_i$

 $\xi^\prime = {\rm cross}{\rm -monotonic\ cost\ sharing\ method\ for\ Steiner\ forest\ problem$

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

 U_2 = set of all users *i* with $u_i < \pi_i$

 $\xi^\prime = {\rm cross}{\rm -monotonic\ cost\ sharing\ method\ for\ Steiner\ forest\ problem}$

Similarity Property: For every $S \subseteq U_2$: If there is a user $i \in S$ with $\xi(i, S) > u_i$ or $\xi'(i, S) > u_i$ then there exists a user $j \in S$ with $\xi(j, S) > u_j$ and $\xi'(j, S) > u_j$.

Lem: When starting with a low-utility set $S \subseteq U_2$, the final user sets produced by $M(\xi)$ and $M(\xi')$ are the same

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

- **Lem: (Low-Utility Lemma):** $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2
- *Proof:* Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.
- $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

 $\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

$$\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$$

・ロット (雪) (日) (日) 日

Lem: (Low-Utility Lemma): $M(\xi)$ is α -approximate on U_2 if $M(\xi')$ is α -approximate on U_2

Proof: Solution for set with minimum social cost never pays a penalty, as $u_i < \pi_i$. Thus, optimal social cost for PCSF and SF are the same. Furthermore, $C(S) \le C'(S)$ for all $S \subseteq U_2$. Due to the similarity property, both mechanisms output the same set *S*.

$$\Pi(S) = u(U \setminus S) + C(S) \le u(U \setminus S) + C'(S) = \Pi'(S) \le \alpha \Pi'^* = \alpha \Pi^*$$

・ロット (雪) (日) (日) 日

Putting the Pieces together...

We showed:

- $M(\xi)$ is 1-approximate on high-utility users
- $M(\xi)$ is $\Theta(\log^2 n)$ -approximate on low-utility users

Thm: $M(\xi)$ is a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and $\Theta(\log^2 n)$ -approximate

Remark: technique extends to other prize-collecting problems, e.g., prize-collecting facility location

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Putting the Pieces together...

We showed:

- M(ξ) is 1-approximate on high-utility users
- $M(\xi)$ is $\Theta(\log^2 n)$ -approximate on low-utility users

Thm: $M(\xi)$ is a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and $\Theta(\log^2 n)$ -approximate

Remark: technique extends to other prize-collecting problems, e.g., prize-collecting facility location

ヘロト 人間 ト イヨト イヨト

Putting the Pieces together...

We showed:

- M(ξ) is 1-approximate on high-utility users
- $M(\xi)$ is $\Theta(\log^2 n)$ -approximate on low-utility users

Thm: $M(\xi)$ is a group-strategyproof cost sharing mechanism for PCSF that is 3-budget balanced and $\Theta(\log^2 n)$ -approximate

Remark: technique extends to other prize-collecting problems, e.g., prize-collecting facility location

・ロト ・雪 ト ・ ヨ ト ・ ヨ

Part III

Conclusions and Open Problems

-20

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

New efficiency measure:

circumvents classical intractability results

- enables to differentiate the solution quality of different cost sharing mechanisms
- motivates the design of "good" cost sharing mechanisms
- ... but still might be too restrictive!?

Obs: Suppose that there is a set $S \subseteq U$ with $C(S') \ge C(S)/\delta$ for all $S' \subseteq S$ and some constant $\delta \ge 1$. Then there is no $\Omega(\log |S|)$ -approximate Moulin mechanism that satisfies cost recovery.

[Brenner, S. 06]

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

New efficiency measure:

- circumvents classical intractability results
- enables to differentiate the solution quality of different cost sharing mechanisms
- motivates the design of "good" cost sharing mechanisms
- ... but still might be too restrictive!?

Obs: Suppose that there is a set $S \subseteq U$ with $C(S') \ge C(S)/\delta$ for all $S' \subseteq S$ and some constant $\delta \ge 1$. Then there is no $\Omega(\log |S|)$ -approximate Moulin mechanism that satisfies cost recovery.

[Brenner, S. 06]

New efficiency measure:

- circumvents classical intractability results
- enables to differentiate the solution quality of different cost sharing mechanisms
- motivates the design of "good" cost sharing mechanisms
- ... but still might be too restrictive!?

Obs: Suppose that there is a set $S \subseteq U$ with $C(S') \ge C(S)/\delta$ for all $S' \subseteq S$ and some constant $\delta \ge 1$. Then there is no $\Omega(\log |S|)$ -approximate Moulin mechanism that satisfies cost recovery.

[Brenner, S. 06]

New efficiency measure:

- circumvents classical intractability results
- enables to differentiate the solution quality of different cost sharing mechanisms
- motivates the design of "good" cost sharing mechanisms
- ... but still might be too restrictive!?

Obs: Suppose that there is a set $S \subseteq U$ with $C(S') \ge C(S)/\delta$ for all $S' \subseteq S$ and some constant $\delta \ge 1$. Then there is no $\Omega(\log |S|)$ -approximate Moulin mechanism that satisfies cost recovery.

[Brenner, S. 06]

◆□▶ ◆□▶ ◆回▶ ◆回▶ ◆□ ● のへの

Open Problems

- LP formulation for PCSF primal-dual algorithm
- study other problems in cost sharing context (appealing from both sides, game theory and algorithm design)
- come up with alternative reasonable objectives (group-strategyproofness sometimes asks for too much)

< ロ > < 同 > < 回 > < 回 > .