Introduction Properties of improvement sequences Complexity of computing equilibria

On the Impact of Combinatorial Structure on Congestion Games

Berthold Vöcking

joint work with Heiner Ackermann and Heiko Röglin

Department of Computer Science RWTH Aachen

Bertionro 2006

イロト イボト イヨト イヨト

Congestion Games - Def

Congestion game is a tuple $\Gamma = (\mathcal{N}, \mathcal{R}, (\Sigma_i)_{i \in \mathcal{N}}, (d_r)_{r \in \mathcal{R}})$ with

- $\mathcal{N} = \{1, \dots, n\}$, set of players
- $\mathcal{R} = \{1, \ldots, m\}$, set of resources
- $\Sigma_i \subseteq 2^{[m]}$, strategy space of player *i*
- $d_r: \{1, \ldots, n\}
 ightarrow \mathbb{R}$, delay function or resource r

For any state $S = (S_1, \dots, S_n) \in \Sigma_1 imes \dots \Sigma_n$

- n_r = number of players with $r \in S_i$
- $d_r(n_r) = \text{delay of resource } r$
- $\delta_i(S) = \sum_{r \in S_i} d_r(n_r)$ = delay of player *i*

S is Nash equilibrium if no player can unilaterally decrease its delay.

イロト イボト イヨト イヨト 二日

Properties of improvement sequences Complexity of computing equilibria

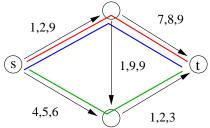
Example: Network (Path) Congestion Games

- Given a directed graph G = (V, E) with delay functions $d_e : \{1, \ldots, n\} \to \mathbb{N}, e \in E$.
- Player *i* wants to allocate a path of minimal delay between a source s_i and a target t_i.

Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

- Given a directed graph G = (V, E) with delay functions $d_e : \{1, \ldots, n\} \to \mathbb{N}, e \in E$.
- Player *i* wants to allocate a path of minimal delay between a source s_i and a target t_i.

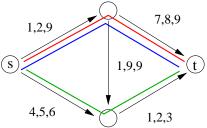


イロト イボト イヨト イヨト

Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

- Given a directed graph G = (V, E) with delay functions $d_e : \{1, \ldots, n\} \to \mathbb{N}, e \in E$.
- Player *i* wants to allocate a path of minimal delay between a source *s_i* and a target *t_i*.



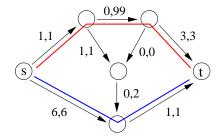
 Game is called symmetric if all players have the same source/target pair.

・ロト ・同ト ・ヨト ・ヨト

Introduction Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

A sequence of (best reply) improvement steps: First step ...

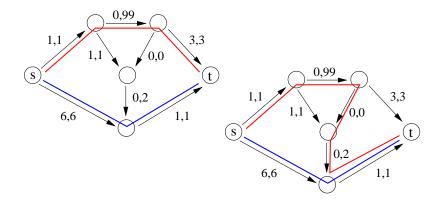


-

Introduction Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

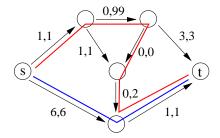
A sequence of (best reply) improvement steps: First step ...



Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

... second step ...

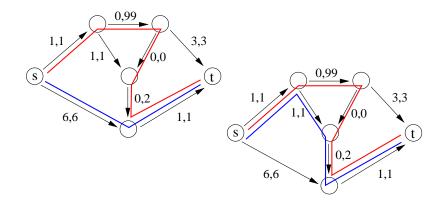


A (2) × A (2) × A (2) ×

Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

... second step ...

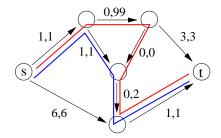


() < </p>

Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

... third step ...

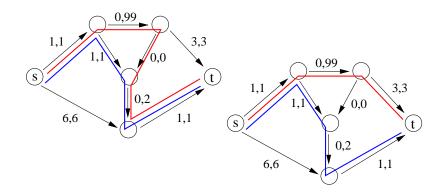


- 4 回 5 - 4 三 5 - 4 三 5

Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

... third step ...

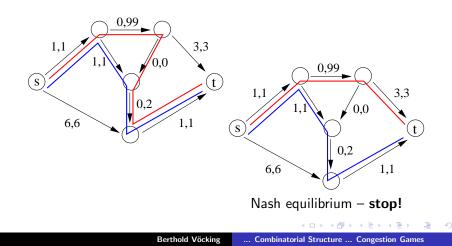


イロト イヨト イヨト イヨト

Properties of improvement sequences Complexity of computing equilibria

Example: Network (Path) Congestion Games

... third step ...



Properties of improvement sequences Complexity of computing equilibria

The transition graph

Definition

- The transisition graph of a congestion game Γ contains a node for every state S and a directed edge (S, S') if S' can be reached from S by the improvement step of a single player.
- The *best reply transisiton graph* contains only edges for best reply improvement steps.

The sinks of the (best reply) transition graph corresponds to the Nash equilibria of Γ .

イロト イポト イヨト イヨト

Introduction Properties of improvement sequences Complexity of computing equilibria

• Does every congestion posses a Nash equilibrium?

<ロ> (日) (日) (日) (日) (日)

Introduction Properties of improvement sequences Complexity of computing equilibria

Questions

Does every congestion posses a Nash equilibrium?
 Yes! – The transisition graph has at least one sink.

<ロ> (日) (日) (日) (日) (日)

- Does every congestion posses a Nash equilibrium?
 Yes! The transisition graph has at least one sink.
- Does any sequence of improvement steps reach a Nash equilibrium?

イロン イヨン イヨン

- Does every congestion posses a Nash equilibrium?
 Yes! The transisition graph has at least one sink.
- Does any sequence of improvement steps reach a Nash equilibrium?

Yes! - The transition graph does not contain cycles.

・ロン ・回と ・ヨン・

- Does every congestion posses a Nash equilibrium?
 Yes! The transisition graph has at least one sink.
- Does any sequence of improvement steps reach a Nash equilibrium?

Yes! - The transition graph does not contain cycles.

• How many steps are needed to reach a Nash equilibrium?

- Does every congestion posses a Nash equilibrium?
 Yes! The transisition graph has at least one sink.
- Does any sequence of improvement steps reach a Nash equilibrium?

Yes! - The transition graph does not contain cycles.

 How many steps are needed to reach a Nash equilibrium? It depends on the combinatorial structure of the underlying optimization problem.

- Does every congestion posses a Nash equilibrium?
 Yes! The transisition graph has at least one sink.
- Does any sequence of improvement steps reach a Nash equilibrium?

Yes! - The transition graph does not contain cycles.

- How many steps are needed to reach a Nash equilibrium? It depends on the combinatorial structure of the underlying optimization problem.
- What is the complexity of computing Nash equilibria in congestion games?

・ロト ・回ト ・ヨト ・ヨト

- Does every congestion posses a Nash equilibrium?
 Yes! The transisition graph has at least one sink.
- Does any sequence of improvement steps reach a Nash equilibrium?

Yes! - The transition graph does not contain cycles.

- How many steps are needed to reach a Nash equilibrium? It depends on the combinatorial structure of the underlying optimization problem.
- What is the complexity of computing Nash equilibria in congestion games?

We will see ...

・ロト ・回ト ・ヨト ・ヨト

Introduction Properties of improvement sequences Complexity of computing equilibria

Finite Improvement Property

Proposition (Rosenthal 1973)

For every congestion game, every sequence of improvement steps is finite.

Finite Improvement Property

Proposition (Rosenthal 1973)

For every congestion game, every sequence of improvement steps is finite.

The proposition follows by a nice potential function argument.

Rosenthal's potential function is defined by

$$\phi(S) = \sum_{r \in \mathcal{R}} \sum_{i=1}^{n_r(S)} d_r(i)$$

伺下 イヨト イヨト

Finite Improvement Property

Proposition (Rosenthal 1973)

For every congestion game, every sequence of improvement steps is finite.

The proposition follows by a nice potential function argument.

Rosenthal's potential function is defined by

$$\phi(S) = \sum_{r \in \mathcal{R}} \sum_{i=1}^{n_r(S)} d_r(i)$$

If a single player decreases its latency by Δ then also the potential decreases by Δ .

・ロト ・同ト ・ヨト ・ヨト

Fast convergence for singleton congestion games

Theorem (leong, McGrew, Nudelman, Shoham, Sun, 2005)

In singleton congestion games, all improvement sequences have length $O(n^2m)$.

イロト イヨト イヨト イヨト

Fast convergence for singleton congestion games

Theorem (leong, McGrew, Nudelman, Shoham, Sun, 2005)

In singleton congestion games, all improvement sequences have length $O(n^2m)$.

Question:

Which combinatorial property of the players' strategy spaces guarantees a polynomial upper bound on the length of improvement sequences?

・ロト ・回ト ・ヨト ・ヨト

Fast convergence for singleton congestion games

Theorem (leong, McGrew, Nudelman, Shoham, Sun, 2005)

In singleton congestion games, all improvement sequences have length $O(n^2m)$.

Question:

Which combinatorial property of the players' strategy spaces guarantees a polynomial upper bound on the length of improvement sequences?

・ロト ・回ト ・ヨト ・ヨト

Matroid Congestion Games

Def: Matroid congestion games

- A game Γ is called *matroid congestion game* if, for every i ∈ N, Σ_i is the bases of a matroid over R.
- All strategies of a player have the same cardinaility, which corresponds to the *rank* of the player's matroid.
- The rank of the game, rk(Γ), is defined to be the maximum matroid rank over all players.

イロト イポト イヨト イヨト

Matroid Congestion Games

Def: Matroid congestion games

- A game Γ is called *matroid congestion game* if, for every i ∈ N, Σ_i is the bases of a matroid over R.
- All strategies of a player have the same cardinaility, which corresponds to the *rank* of the player's matroid.
- The rank of the game, rk(Γ), is defined to be the maximum matroid rank over all players.

Theorem (Ackermann, Röglin, V., 2006)

In a matroid game Γ , all best response improvement sequences have length $O(n^2 m \operatorname{rk}(\Gamma))$.

イロト イボト イヨト イヨト

Sort delay values d_r(i), for r ∈ R and 1 ≤ k ≤ n, in non-decreasing order.

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

- Sort delay values d_r(i), for r ∈ R and 1 ≤ k ≤ n, in non-decreasing order.
- Define alternative delay functions:

 $\overline{d}_r(k) :=$ rank of $d_r(k)$ in sorted list.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Sort delay values d_r(i), for r ∈ R and 1 ≤ k ≤ n, in non-decreasing order.
- Define alternative delay functions:

 $\overline{d}_r(k) :=$ rank of $d_r(k)$ in sorted list.

Lemma:

Let S be a state of the game. Let S' be the state obtained from S after a best response of player i. Then $\bar{\delta}_i(S') < \bar{\delta}_i(S)$.

・ロト ・同ト ・ヨト ・ヨト

- Sort delay values d_r(i), for r ∈ R and 1 ≤ k ≤ n, in non-decreasing order.
- Define alternative delay functions:

 $\bar{d}_r(k) :=$ rank of $d_r(k)$ in sorted list.

Lemma:

Let S be a state of the game. Let S' be the state obtained from S after a best response of player i. Then $\bar{\delta}_i(S') < \bar{\delta}_i(S)$.

Consequence: Rosenthal's potential function yields an upper bound of $n^2 m \operatorname{rk}(\Gamma)$ on the length of a best response sequence as

$$ar{\phi}(S) = \sum_{r \in \mathcal{R}} \sum_{k=1}^{n_r(S)} ar{d}_r(k) \leq \sum_{r \in \mathcal{R}} \sum_{k=1}^{n_r(S)} n \, m \, \leq \, n^2 \, m \, \mathrm{rk}(\Gamma) \, . \quad \Box$$

Fast Convergence beyond the Matroid Property?

Theorem (Ackermann, Röglin, V., 2006)

Let S be any inclusion-free non-matroid set system. Then, for every n, there exists a 4n-player congestion game with the following properties:

- the strategy space of each player is isomorph to S,
- the delay functions are non-negative and non-decreasing, and
- there is a best response sequence of length 2ⁿ.

・ロト ・同ト ・ヨト ・ヨト

Fast Convergence beyond the Matroid Property?

Theorem (Ackermann, Röglin, V., 2006)

Let S be any inclusion-free non-matroid set system. Then, for every n, there exists a 4n-player congestion game with the following properties:

- the strategy space of each player is isomorph to S,
- the delay functions are non-negative and non-decreasing, and
- there is a best response sequence of length 2ⁿ.

Corollary

The matroid property is the maximal property on the individual players' strategy spaces that guarantees polynomial convergence.

イロト イポト イヨト イヨト

Proof Idea for Exponential Convergence

Because of the non-matroid property of instance \mathcal{I} , one can show:

1-2-exchange property

There exists three resources a, b, and c with the property that, if the weights of the other resources are set appropriately, an optimal solution of \mathcal{I} contains

- a but not b and c if $w_a < w_b + w_c$, and
- b and c but not a if $w_a > w_b + w_c$.

・ 同下 ・ ヨト ・ ヨト

Proof Idea for Exponential Convergence

Because of the non-matroid property of instance $\ensuremath{\mathcal{I}}$, one can show:

1-2-exchange property

There exists three resources a, b, and c with the property that, if the weights of the other resources are set appropriately, an optimal solution of \mathcal{I} contains

- a but not b and c if $w_a < w_b + w_c$, and
- b and c but not a if $w_a > w_b + w_c$.

Using this property one can interweave the strategy spaces in form of a counter that yields a best response sequence of length 2^n .

Further results on the length of best response paths

Fabrikant, Papadimitriou, Talwar, 2004

There are instances of network congestion games that have initial states for which all improvement sequences have exponential length.

Proof technique: PLS-reduction (to be explained next ...)

向下 イヨト イヨト

Further results on the length of best response paths

Fabrikant, Papadimitriou, Talwar, 2004

There are instances of network congestion games that have initial states for which all improvement sequences have exponential length.

Proof technique: PLS-reduction (to be explained next ...)

Ackermann, Röglin, V., 2006

Dito for symmetric network congestion games, although Nash equilibria can be found in polynomial time.

Proof technique: embedding of asymmetric network games into symmetric network games

・ロト ・回ト ・ヨト ・ヨト

The relationship to local search

Rosenthal's potential function allows to interprete congestion games as local search problems:

Nash equilibria are local optima wrt potential function.

・ 同 ト ・ ヨ ト ・ ヨ ト

The relationship to local search

Rosenthal's potential function allows to interprete congestion games as local search problems:

Nash equilibria are local optima wrt potential function.

How difficult is it to compute local optima?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

PLS (Polynomial Local Search)

PLS contains optimization problems with a specified neighborhood relationship Γ . It is required that there is a poly-time algorithm that, given any solution s,

- computes a solution in $\Gamma(s)$ with better objective value, or
- certifies that *s* is a local optimum.

PLS (Polynomial Local Search)

PLS contains optimization problems with a specified neighborhood relationship Γ . It is required that there is a poly-time algorithm that, given any solution s,

- computes a solution in $\Gamma(s)$ with better objective value, or
- certifies that *s* is a local optimum.

Examples: • FLIP (circuit evaluation with Flip-neighborhood)

- Max-Sat with Flip-neighborhood
- Max-Cut with Flip-neighborhood
- TSP with 2-Opt-neighorbood
- Congestion games wrt improvement steps

PLS reductions

Given two PLS problems Π_1 and Π_2 find a mapping from the instances of Π_1 to the instances of Π_2 such that

- the mapping can be computed in polynomial time,
- the local optima of Π_1 are mapped to local optima of $\Pi_2,$ and
- given any local optimaum of Π₂, one can construct a local optimium of Π₁ in polynomial time.

PLS reductions

Given two PLS problems Π_1 and Π_2 find a mapping from the instances of Π_1 to the instances of Π_2 such that

- the mapping can be computed in polynomial time,
- the local optima of Π_1 are mapped to local optima of Π_2 , and
- given any local optimaum of Π₂, one can construct a local optimium of Π₁ in polynomial time.

Examples for PLS-complete problem:

- FLIP (via a master reduction)
- Max-Sat and POS-NAE-SAT
- Max-Cut

Complexity of congestion games

Known Results

	network games	general games
symmetric	∃ poly-time Algo	PLS-complete
asymmetric	PLS-complete	PLS-complete

[Fabrikant, Papadimitriou, Talwar 2004]

イロト イポト イヨト イヨト

Complexity of congestion games

New Results

It is PLS-complete to compute Nash equilibria for the following classes of congestion games:

- threshold congestion games with linear latency functions
- network congestion games with linear latency functions
- undirected network congestion games with linear latency functions
- congestion games for overlay network design with linear latency functions
- market sharing games

Complexity of threshold games

Threshold congestion games:

$$\mathcal{R} = \mathcal{R}_{in} \cup \mathcal{R}_{out}$$
. Every player *i* has two strategies
in: an arbitrary subset $S_i \subseteq \mathcal{R}_{in}$
out: a subset $S'_i = \{r_i\}$ for a unique resource $r_i \in \mathcal{R}_{out}$ with
a fixed delay, the so-called *threshold* t_i .

- ▲ 圖 ト - ▲ 国 ト

Complexity of threshold games

Threshold congestion games:

$$\mathcal{R} = \mathcal{R}_{in} \cup \mathcal{R}_{out}$$
. Every player *i* has two strategies
in: an arbitrary subset $S_i \subseteq \mathcal{R}_{in}$
out: a subset $S'_i = \{r_i\}$ for a unique resource $r_i \in \mathcal{R}_{out}$ with
a fixed delay, the so-called *threshold* t_i .

Quadratic threshold games:

Each resource in \mathcal{R}_{in} is contained in the strategy of two players.

(4月) (4日) (4日)

Complexity of threshold games

Threshold congestion games:

$$\mathcal{R} = \mathcal{R}_{in} \cup \mathcal{R}_{out}$$
. Every player *i* has two strategies
in: an arbitrary subset $S_i \subseteq \mathcal{R}_{in}$
out: a subset $S'_i = \{r_i\}$ for a unique resource $r_i \in \mathcal{R}_{out}$ with
a fixed delay, the so-called *threshold* t_i .

Quadratic threshold games:

Each resource in \mathcal{R}_{in} is contained in the strategy of two players.

Theorem (Ackermann, Röglin, V., 2006)

Quadratic threshold games are PLS-complete.

Reduction from Max-Cut to quadratic threshold games

Max-Cut as "party affiliation game"

Nodes correpond to players. The strategies of a node are

- left: choose the left hand side of the cut
- right: choose the right hand side of the cut

The costs for these strategies are

- left: sum of the weights of the incident edges to the left
- right: sum of the weights of the indident edges to the right

Reduction from Max-Cut to quadratic threshold games

Max-Cut as "party affiliation game"

Nodes correpond to players. The strategies of a node are

- left: choose the left hand side of the cut
- right: choose the right hand side of the cut

The costs for these strategies are

- left: sum of the weights of the incident edges to the left
- right: sum of the weights of the indident edges to the right

Alternative definition of the costs

- left: sum of the weights of the incident edges to the left
- right: half of the weight of all indident edges

Alternative costs do not change the preferences!

・ロト ・回ト ・ヨト ・ヨト

Reduction from Max-Cut to quadratic threshold games

Max-Cut as a quadratic threshhold game

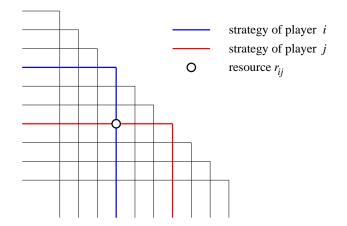
- Nodes correpond to players, edges to resources in \mathcal{R}_{in} .
- The strategies of a node are either
 - left: allocate all incident edges from \mathcal{R}_{in}
 - right: allocate unique resource from $\mathcal{R}_{\textit{out}}$
- An edge $e \in \mathcal{R}_{in}$ has the delay function

$$d_e(1)=0$$
 and $d_e(2)=w_e$.

• The threshold for a node v is set to

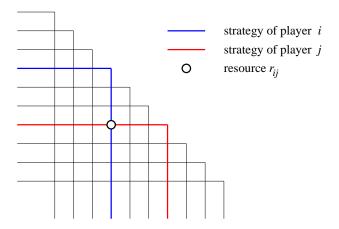
$$t_{v} = \frac{1}{2} \sum_{e \ni v} w_{e}$$

Quadratic threshold games as grid routing games



・ 同 ト ・ 国 ト ・ 国 ト

Quadratic threshold games as grid routing games



This is the key argument for PLS completeness of network congestion games with linear latency functions.

Further consequences

Furthermore, as all involved reductions are *tight* so that

• there are games from all of these classes for which there exist an initial state from which all better response sequences have exponential length

- 4 回 ト 4 ヨ ト 4 ヨ ト

Further consequences

Furthermore, as all involved reductions are *tight* so that

- there are games from all of these classes for which there exist an initial state from which all better response sequences have exponential length, and
- it is PSPACE-hard to compute a Nash equilibrium reachable from a given state.

・ロト ・回ト ・ヨト ・ヨト

• The length of best reply improvement sequences in matroid congestion games is polynomially bounded because of the (1,1)-exchange property.

イロト イヨト イヨト イヨト

- The length of best reply improvement sequences in matroid congestion games is polynomially bounded because of the (1,1)-exchange property.
- Every inclusion-free non-matroid set system can used to construct a congestion game with exponentially long best reply improvement paths because of the (1,2)-exchange property.

イロン イボン イヨン トヨ

- The length of best reply improvement sequences in matroid congestion games is polynomially bounded because of the (1,1)-exchange property.
- Every inclusion-free non-matroid set system can used to construct a congestion game with exponentially long best reply improvement paths because of the (1,2)-exchange property.
- A reduction from threshold games yields PLS-completeness. The strategy spaces of threshold games correspond to (1, k)-exchanges for $k = \Theta(n)$.

イロン イボン イヨン トヨ

- The length of best reply improvement sequences in matroid congestion games is polynomially bounded because of the (1,1)-exchange property.
- Every inclusion-free non-matroid set system can used to construct a congestion game with exponentially long best reply improvement paths because of the (1,2)-exchange property.
- A reduction from threshold games yields PLS-completeness. The strategy spaces of threshold games correspond to (1, k)-exchanges for $k = \Theta(n)$.
- What is the compexity of congestion games constructed from (1, k)-exchanges for k > 2?

(日) (同) (E) (E) (E)

- The length of best reply improvement sequences in matroid congestion games is polynomially bounded because of the (1,1)-exchange property.
- Every inclusion-free non-matroid set system can used to construct a congestion game with exponentially long best reply improvement paths because of the (1,2)-exchange property.
- A reduction from threshold games yields PLS-completeness. The strategy spaces of threshold games correspond to (1, k)-exchanges for $k = \Theta(n)$.
- What is the compexity of congestion games constructed from (1, k)-exchanges for k > 2?

(日) (同) (E) (E) (E)