
1

Jointly Restraining Big Brother:
Using cryptography to reconcile privacy with data aggregation

Ran Canetti
IBM Research

Privacy-sensitive interactions

The basic problem: Parties want to perform some joint
computation while preserving privacy of local data.

Examples:

• Elections
• Obtaining statistical data on private records, e.g.:

– Medical records
– Shopping patterns and preferences
– Whereabouts and travel patterns of individuals

• Pooling information from different sources

A general approach for solution:

1. Formalize the required functionality in terms of
a “centralized trusted service”.

2. Run a cryptographic protocol that realizes the
“centralized trusted service” functionality.

– Can use a generic construction (typically
inefficient)

– Can design more efficient protocols for a given
trusted-service.

The “trusted service” solution

• Assume all parties have “ideally secure
channels” to an incorruptible trusted party.

• The trusted party processes inputs coming
from the parties and provides the desired
outputs.

Note: Trusted party can be reactive: Can get
inputs and generate outputs throughout
the computation.

2

Example: Elections

Tasks of trusted party:
• Receives votes, verifies credentials
• Publicizes tallies, required statistics
• Revokes privacy of misbehaving individuals
• …

Example: Medical records

Tasks of trusted party:
• Obtains full records from individuals and doctors

• Provides full information on records with
authorization by individual

• Provides statistical information on records
(possibly limited/perturbed)

• Allows pooling some information with other
depositories

• …

Challenges (I):

• Specification design (write the trusted party code):
Exactly what is revealed and when?

• What aggregates are “ok”, what perturbations
• When to revoke identity, how much to revoke
• How to resolve disputes
• …

That’s the “non-cryptographic” part. Often hardest…
(But can assume a trusted party!)

Challenges (II):

• Efficiency of the cryptographic solution:
– Communication patterns:

Are third parties involved? Which parties need to be on-line?

– Communication complexity: rounds, bandwidth, etc.
– Computational complexity

• Security of the solution:
– Based on what assumptions?
– What security properties are guaranteed?

3

Stand-Alone Security
• Security is interpreted as “emulating the trusted service

solution” [GMW87]: “Whatever damage that can be done
to the protocol could have been done to the trusted party
solution”.

However:
• The “classic” formalizations of this intuitive notion (e.g.

[GL90,MR91,B91,C95,C00]) guarantee security only
when a single protocol execution takes place at any time.

• In contrast, in today’s networks:
– Multiple copies of a protocol may be running concurrently
– A protocol is run concurrently with other protocols
– Parties may be unaware of other executions, protocols, parties.

Stand-alone security does not suffice!

Example: Concurrent Zero-Knowledge
[F90,DNS98]

– Original notion of ZK [GMR85] does not
guarantee security when the prover interacts
with many verifiers concurrently.

– Best known solution: O(log n) rounds
[RK99,PRS02]

– Lower bound of (log n) rounds
(for black-box simulation)
[CKPR01]

P

V

VV

V

…

Example: Malleability of commitments
[DDN91]

Stand-alone notions do not guarantee
“independence” among committed values.

Example: Malleability of commitments
[DDN91]

Stand-alone notions do not guarantee
“independence” among committed values.

Commit: P1 P2

A

C C’

4

Example: Malleability of commitments
[DDN91]

Stand-alone notions do not guarantee
“independence” among committed values.

Commit: P1 P2

A

C C’

Open: P1 P2

A

v v+1

How to guarantee security in
complex protocol environments?

Traditional approach: keep writing more sophisticated
definitions, that capture more scenarios…
– Ever more complex
– No guarantee that “we got it all”.
– No general view

An alternative approach:
– Prove security of a protocol as stand-alone

(single execution, no other parties).
– Use a general secure composition theorem to deduce

security in arbitrary execution environments.

Universally Composable Security [C01]

Provides a framework where:

1. Can capture the security requirements of
practically any cryptographic task.

2. Can prove a general, “universal composition”
theorem that:

• Guarantees security in arbitrary multi-protocol,
multi-execution environments.

• Enables modular design and analysis of
protocols.

The composition operation
(Originates with [MR91])

Start with:
• Protocol F that uses ideal calls to a “trusted party” F
• Protocol that “emulates” F
Construct the composed protocol :
• Each call to F is replaced with an invocation of .
• Each value returned from is treated as coming

from F.

Note: In F parties may call many copies of F.
� In many copies of run concurrently.

π
π

π
π

π π

ρ

ρ
ρ

ρ

5

The composition operation
(single call to F)

F

�ρ

ρρ

ρ

The composition operation
(single call to F)

F

�

π

ππ

π

ρρρ

ρρ
ρ

ρ

ρ

The composition operation
(multiple calls to F)

F

�

FF

ρρ

ρρ

ρ ρ

ρρ π
ππ

π ππ πππ

πππ

The universal composition (UC) theorem:
Protocol “emulates” protocol F.

(That is, for any adversary A there exists an adversary A` such that
no Z can tell whether it is interacting with (, A) or with (F,A`).)

Corollary: If F securely realizes
functionality G then so does .

ρρ

ρ
ρ

π

π

6

Implications of the UC theorem

1. Can design and analyze protocols in a
modular way:

– Partition a given task T to simpler sub-tasks T1…Tk

– Construct protocols for realizing T1…Tk.
– Construct a protocol for T assuming ideal access to

T1…Tk.
– Use the composition theorem to obtain a protocol

for T from scratch.

(Analogous to subroutine composition for
correctness of programs, but with an added
security guarantee.)

Implications of the UC theorem

2. Assume protocol “emulates” a trusted
service F. Can deduce security of in
any multi-execution environment:

As far as the “rest of the network” is
concerned, interacting with (multiple
copies of) is equivalent to interacting
with (multiple copies of) F.

π

π

π

Questions:

• do
• Are known protocols UC-secure?

(Do these protocols “emulate” the trusted services
associated with the corresponding tasks?)

• How to design UC-secure protocols?zcyk02]

Existence results: Honest majority

Thm: Can realize any trusted service in a UC way.
(e.g. use the protocols of [BGW88, RB89,CFGN96]).

Usages:
– All parties actively participate in computation

– Use a set of servers to realize the trusted service
(secure as long as only a minority is corrupted).

7

What if there is no honest majority?
(e.g., two-party protocols)

• Known protocols (e.g., [Y86,GMW87]) do not work.
(“black-box simulation with rewinding” cannot be used).

• Many interesting functionalities (commitment, ZK,
coin tossing, etc.) cannot be realized in plain model.

• In the “common random string model” can do:
– UC Commitment, UC Zero-Knowledge

[CF01, DDOPS01,CLOS02, DN02, DG03]

– Emulate any trusted service [CLOS02]

The [GMW87] paradigm:

1) Construct a protocol secure against
semi-honest adversaries (who follow the
protocol specification):
-Represent the “trusted party code” as a Boolean circuit

(state represented as “feedback lines”)
-Each party shares its input among all others

(using a simple sum scheme)
-The parties evaluate the circuit gate by gate.

Each gate evaluation needs 1-out-of-4 oblivious
transfer between any pair of parties.

-Output lines are revealed to the corresponding parties.
Shares of “feedback lines” kept.

-Works even in the UC model.

The [GMW87] paradigm:

1) F
2) Construct a compiler that transforms

protocols secure in the semi-honest model
to protocols secure against malicious
adversaries.

[GMW87] Protocol Compilation

• Aim: force the malicious parties to follow the
protocol specification.

• How?
– Parties commit to inputs
– Parties commit to uniform random tapes (use secure

coin-tossing to ensure uniformity)
– Parties use zero-knowledge protocols to prove that

every message sent is according to the protocol (and
consistent with the committed input and random-tape).

8

Constructing a UC “[GMW87] compiler”

• Problem: In [GMW87], both commitment
and ZK are not UC.

• First attempt: Replace commitment and
ZK with UC counterparts.

Constructing a UC “[GMW87] compiler”

• Problem: In [GMW87], both commitment
and ZK are not UC.

• First attempt: Replace commitment and
ZK with UC counterparts.
– Doesn’t work… (cannot make ZK proofs on

“ideal commitments”)

The “Commit-and-Prove” primitive

• Define a single primitive where parties can:
– Commit to values
– Prove “in ZK” statements regarding the

committed values

• Can realize “C&P” in the CRS model
(using UC commitment and UC ZK).

• Given access to ideal “C&P”, can do the
[GMW87] compiler without computational
assumptions.

To sum up:

• Can “emulate” any trusted service in a
universally composable way, with any
number of faults.

• Main problem: Solution is typically very
inefficient (to the point of being unrealistic)…

9

Application to privacy

• Any privacy problem that has a “trusted
service” solution is solvable in principle.

• Challenges:
– Good specification of the “trusted privacy

service.”

– More realistic protocols.

