

A Cryptography-Flavored Approach to Privacy in Public Databases

Drineas, Dwork, Goldberg, Isard, Redz, Smith, Stockmeyer

Think "Census"

- Method for sanitizing a database

 □ Meaningful statistical analysis

 □ Preservation of individuals' privacy
- What do we mean?

"Privacy" in English

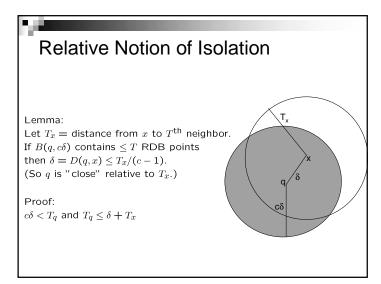
- Protection from being brought to the attention of others [Gavison]
 □inherently valuable
 □attention invites further privacy loss, eg info
- One's privacy is maintained to the extent that one blends in with the crowd.
- Crowd size exceeds threshold T

Focus on Geometric Data

- Real database (RDB) consists of n points in d-dimensional space (say, unit ball)
 □points are unlabeled
- Publish sanitized database (SDB)

 □ candidate sanitization procedure (later)

Adversary: The Isolator


- Inputs to a c-isolator:

 □SDB

 □auxiliary information z
- Output $I(SDB, z) = q \in \mathcal{B}$
- Success occurs if

$$|B(q, c\delta) \cap RDB| \le T$$

where δ is distance from q to closest RDB point

ı

Isolation Does Not Imply Failure of Sanitization

- Cynthia publishes her point p on web
 □ I(SDB,Cynthia's web site) = p
 □ δ = 0 and ball of radius cδ contains only one RDB point
- Not the fault of the sanitization procedure!

 □I'(Cynthia's web sit) = p

Cryptographic Flavoring

- SDB shouldn't help the isolator "too much"
- Definition of "not too much" should be fairly forgiving, eg, advantage obtained from seeing the SDB may be, say, n¹+ε

Candidate: Effective Sanitization

 $\forall^* z \forall \mathcal{D} \forall I \exists I' \text{ whp over RDB} \in_R \mathcal{D}$: $\Pr[I(SDB, z)] - \Pr[I'(z)] \leq n^{-(1+\varepsilon)}$

Alternatively, worst case over RDBs: $\forall z \forall I \exists I' \forall RDB \dots$

*Need to constrain z somewhat.

٦

Distribution on Databases?

- Don't want to deal with crypto-like definitions, in which, say, sum of every 7th elements is congruent to 23 mod 51
- Take statistician's approach: each point in the RDB is an independent sample from a single fixed distribution

Candidate Sanitization Procedure

- For each $x \in RDB$
 - □ Find T_x = distance to T^{th} nearest neighbor □ Choose $x' \in_R B(x,T_x)$
- Complements definition of c-isolation \Box if q c-isolates x then $D(q,x) \le T_x/(c-1)$
 - □ consequence: high dimensionality is our friend
- Intuition:
 - $\hfill\Box$ perturb minimally to prevent isolation
 - □ outliers randomized to oblivion
 - kills isolated anomalies, maintains group anomalies

1

Meaningful Statistical Analysis

- Dream: find a large class of algorithms that "perform well" on sanitized data
- Start with clustering
 - □ clusterings have measures of quality (diameter, conductance, etc.)
 - □ See how measures are preserved
 - under sanitization
 - under de-sanitization