Overview

- Background and some fundamental abstractions for disclosure limitation.
 - Statistical users want more than to retrieve a few numbers.
- Results on bounds for table entries.
- Uses of Markov bases for exact distributions and perturbation of tables.
- Links to log-linear models, and related statistical theory and methods.

R-U Confidentiality Map

- For \(k \)-way table of counts.
- Queries: Requests for marginal tables.
- Responses: Yes--release; No; (and perhaps “Simulate” and then release).
- As released margins cumulate we have increased information about table entries.
- Margins need to be consistent \(\Rightarrow \) possible simulated releases get highly constrained.
Confidentiality Concern

- Uniqueness in population table ⇔ cell count of “1”.
- Uniqueness allows intruder to match characteristics in table with other data bases that include the same variables plus others to learn confidential information.
 - Assuming data are reported without error!
- Identity versus attribute disclosure.

Fundamental Abstractions

- Query space, Q, with partial ordering:
 - Elements can be marginal tables, conditionals, k-groupings, regressions, or other data summaries.
 - Released set: $R(t)$, and implied Unreleasable set: $U(t)$.
 - Releasable frontier: maximal elements of $R(t)$.
 - Unreleasable frontier: minimal elements of $U(t)$.
- Risk and Utility defined on subsets of Q.
 - Risk Measure: identifiability of small cell counts.
 - Utility: reconstructing table using log-linear models.
 - Release rules must balance risk and utility:
 - R-U Confidentiality map.
 - General Bayesian decision-theoretic approach.

Why Marginals?

- Simple summaries corresponding to subsets of variables.
- Traditional mode of reporting for statistical agencies and others.
- Useful in statistical modeling: Role of log-linear models.
- Collapsing categories of categorical variables uses similar DL methods and statistical theory.

Example 1: 2000 Census

- U.S. decennial census “long form”
 - 1 in 6 sample of households nationwide.
 - 53 questions, many with multiple categories.
 - Data measured with substantial error!
 - Data reported after application of data swapping!
- Geography
 - 50 states; 3,000 counties; 4 million “blocks”.
 - Release of detailed geography yields uniqueness in sample and at some level in population.
- American Factfinder releases various 3-way tables at different levels of geography.
Example 2: Risk Factors for Coronary Heart Disease

- 1841 Czech auto workers
 Edwards and Havanek (1985)
- 2×6 table
- population data
 - “0” cell
 - population unique, “1”
 - 2 cells with “2”

Example 3: NLTCS

- National Long Term Care Survey
 - 20-40 demographic/background items.
 - 30-50 items on disability status, ADLs and IADLs, most binary but some polytomous.
 - Linked Medicare files.
- We’ve been working with 2×6 table, collapsed across several waves of survey, with n=21,574.
 Erosheva (2002)
 Dobra, Erosheva, & Fienberg (2003)
Two-Way Fréchet Bounds

- For 2×2 tables of counts $\{n_{ij}\}$ given the marginal totals $\{n_{1+}, n_{2+}\}$ and $\{n_{+1}, n_{+2}\}$:

\[
\begin{bmatrix}
 n_{11} & n_{1+} \\
 n_{21} & n_{2+} \\
 n_{+1} & n_{+2} \\
 \end{bmatrix}
\]

\[
\min(n_{i+}, n_{+j}) \geq n_{ij} \geq \max(n_{i+} + n_{+j} - n, 0)
\]

- Interested in multi-way generalizations involving higher-order, overlapping margins.

Bounds for Multi-Way Tables

- k-way table of non-negative counts, $k \geq 3$.
 - Release set of marginal totals, possibly overlapping.
 - Goal: Compute bounds for cell entries.
 - LP and IP approaches are NP-hard.

- Our strategy has been to:
 - Develop efficient methods for several special cases.
 - Exploit linkage to statistical theory where possible.
 - Use general, less efficient methods for residual cases.

- Direct generalizations to tables with non-integer, non-negative entries.

Role of Log-linear Models?

- For 2×2 case, lower bound is evocative of MLE for estimated expected value under independence:

\[
\hat{m}_{ij} = \frac{n_{i+} n_{+j}}{n}.
\]

 - Bounds correspond to log-linearized version.
 - Margins are minimal sufficient statistics (MSS).

- In 3-way table of counts, $\{n_{ijk}\}$, we model logs of expectations $\{E(n_{ijk}) = \hat{m}_{ijk}\}$:

\[
\log(n_{ijk}) = u + u_{1(i)} + u_{2(j)} + u_{3(k)} + u_{12(ij)} + u_{13(ik)} + u_{23(kj)}
\]

- MSS are margins corresponding to highest order terms: $\{n_{i+}\}$, $\{n_{+k}\}$, $\{n_{+j}\}$.

Graphical & Decomposable Log-linear Models

- **Graphical models**: defined by simultaneous conditional independence relationships
 - Absence of edges in graph.

 Example 2: Czech autoworkers
 Graph has 3 cliques:
 $[ADE][ABCE][BF]$.

- **Decomposable models** correspond to triangulated graphs.
MLEs for Decomposable Log-linear Models

- For decomposable models, expected cell values are explicit function of margins, corresponding to MSSs (cliques in graph):
 - For conditional independence in 3-way table:
 \[\log m_{ijk} = u + u_{1(i)} + u_{2(j)} + u_{3(k)} + u_{12(ij)} + u_{13(ik)} \]
 \[m_{ijk} = \frac{m_{ij}^*m_{i+k}^*}{m_{++}^*} \]
 - Substitute observed margins for expected in explicit formula to get MLEs.

Multi-way Bounds

- For decomposable log-linear models:

 \[\text{Expected Value} = \prod_{\text{MSSs}} \prod_{\text{Separators}} \]

- **Theorem:** When released margins correspond to those of a decomposable model:
 - Upper bound: minimum of relevant margins.
 - Lower bound: maximum of zero, or sum of relevant margins minus separators.
 - Bounds are sharp.

 Fienberg and Dobra (2000)

Multi-Way Bounds (cont.)

- **Example:** Given margins in \(k \)-way table that correspond to \((k-1)\)-fold conditional independence given variable 1:
 \[\{ n_{i_1,i_2,...,i_k} \}, \{ n_{i_1,i_2,...,i-k} \}, ..., \{ n_{i_1,i_2,...,i_k} \} \]
 - Then bounds are
 \[\min \{ n_{i_1,i_2,...,i_k}, n_{i_1,i_2,...,i-k}, ..., n_{i_1,i_2,...,i_k} \} \geq n_{i_1,i_2,...,i_k} \]
 \[\geq \max \{ n_{i_1,i_2,...,i_k} + n_{i_1,i_2,...,i-k} + ... + n_{i_1,i_2,...,i_k} - n_{i_1,i_2,...,i_k}(k-2)0 \} \]

Ex. 2: Czech Autoworkers

- Suppose released margins are
 \[\text{[ADE][ABCE][BF]} \]
 - Correspond to decomposable graph.
 - Cell containing population unique has bounds \([0, 25]\).
 - Cells with entry of “2” have bounds: \([0,20]\) and \([0,38]\).
 - Lower bounds are all “0”.
 - “Safe” to release these margins; low risk of disclosure.
Example 2 (cont.)

- Among all 32,000+ decomposable models, the tightest possible bounds for three target cells are: (0.3), (0.6), (0.3).
 - 31 models with these bounds! All involve [ACDEF].
 - Another 30 models have bounds that differ by 5 or less (critical width) and these involve [ABCD].
 - Method used to search for “optimal” decomposable release also identifies [ABDEF] as potentially problematic.
- Allows proper statistical test of fit for most interesting models.

Example 2: Release of All 5-way Margins

- Approach for $2^2 \times 2$ generalizes to 2^k table given (k-1)-way margins.
- In 2^6 table, if we release all 5-way margins:
 - Almost identical upper and lower values; they all differ by 1.
 - Only 2 feasible tables with these margins!
- UNSAFE!
Example 3: NLTCS

- 2^{16} table of ADL/IADLs with 65,536 cells:
 - 62,384 zero entries; 1,729 cells with count of “1” and 499 cells with count of “2”.
 - $n=21,574$.
 - Largest cell count: 3,853—no disabilities.
- Used simulated annealing algorithm to search all decomposable models for “decomposable” model on frontier with max[upper bound – lower bound] > 3.
- Acting as if these were population data.

NLTCS Search Results

- Decomposable frontier model:
 $$\{[1,2,3,4,5,7,12], [1,2,3,6,7,12], [2,3,4,5,7,8], [1,2,4,5,7,11], [2,3,4,5,7,13], [3,4,5,9,13], [2,3,4,5,13,14], [2,4,5,10,13,14], [1,2,3,4,5,15], [2,3,4,5,8,16]\}.$$
- Has one 7-way and eight 6-way marginals.

Perturbation Maintaining Marginal Totals

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Perturbation distributions given marginals require Markov basis for perturbation moves.

Perturbation for Protection

- Perturbation preserving marginals involves a parallel set of results to those for bounds:
 - Markov basis elements for decomposable case requires only “simple” moves. (Dobra, 2002)
 - Efficient generation of Markov basis for reducible case. (Dobra and Sullivan, 2002)
 - Simplifications for 2^k tables (“binomials”).
 - Rooted in ideas from likelihood theory for log-linear models and computational algebra of toric ideals.
Some Ongoing Research

- Queries in form of combinations of marginals and conditionals.
- Inferences from marginal releases.
- What information does the intruder really have?
- Record linkage and matching.
- Simplified cyclic perturbation distributions.
- Computational algebraic statistics.

Summary

- Some fundamental abstractions for disclosure limitation.
- Results on bounds for table entries.
- Parallels for Markov bases for exact distributions and perturbation of tables.
- New theoretical links among disclosure limitation, statistical theory, and computational algebraic geometry.

The End

- Most papers available for downloading at http://www.niss.org
 http://www.stat.cmu.edu/~fienberg/disclosure.html

- Workshop on Computational Algebraic Statistics December 14 to 18, 2003, American Institute of Mathematics, Palo Alto, California
 http://aimath.org/ARCC/workshops/compalgstat.html

Stochastic Perturbation Methods

- Some methods well-developed in statistical literature:
 - Matrix masking, including adding noise
 - Post-randomization
 - Randomized response after data are collected
 - Multiple Imputation
 - Sampling from full posterior distribution
 - Data swapping and constrained cyclic perturbation
- Key is full information on stochastic transformation for proper statistical inferences.
Exact Distribution of Table Given Marginals

- Exact probability distribution for log-linear model given its MSS marginals:

\[
\sigma(n) = \frac{\prod_{s(i)} \frac{1}{m(i)!}}{\sum_{\text{eq}(c)} \left(\prod_{s(i)} \frac{1}{m(i)!} \right)}
\]

 Fienberg, Makov, Meyer, Steele (2002)

Markov Basis “Moves”

- Simple moves:
 - Based on standard linear contrasts involving 1’s, 0’s, and -1’s for embedded 2’ subtables.
 - For example, in 2×2×2 table, there is 1 move of form:

\[
\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1 \\
\end{array}
\]

- “Non-simple” moves:
 - Require combination of simple moves to reach extremal tables in convex polytope.

Three-way Illustration (k=3)

Challenge: Scaling up approach for large k.

NISS Table Server: 6-Way Table