

Stephen E. Fienberg Department of Statistics Center for Automated Learning and Discovery Center for Computer and Communications Security Carnegie Mellon University Pittsburgh, PA, U.S.A.

NISS Prototype Query System For k-way table of counts. *Queries:* Requests for marginal tables. *Responses:* Yes--release; No; (and perhaps "Simulate" and then release). As released margins cumulate we have increased information about table entries. Margins need to be consistent ==> possible simulated releases get highly constrained.

Confidentiality Concern

- Uniqueness in population table ⇔ cell count of "1".
- Uniqueness allows intruder to match characteristics in table with other data bases that include the same variables plus others to learn confidential information.
 Assuming data are reported without error!

5

• Identity versus attribute disclosure.

Why Marginals?

- Simple summaries corresponding to subsets of variables.
- Traditional mode of reporting for statistical agencies and others.
- Useful in statistical modeling: Role of log-linear models.
- Collapsing categories of categorical variables uses similar DL methods and statistical theory.

Fundamental Abstractions

- Query space, Q, with partial ordering:
 - Elements can be marginal tables, conditionals, *k*-groupings, regressions, or other data summaries.
 - Released set: $\mathbf{R}(t)$, and implied Unreleasable set: $\mathbf{U}(t)$.
 - *Releasable frontier:* maximal elements of **R**(*t*).
 - Unreleasable frontier: minimal elements of U(t).
- Risk and Utility defined on subsets of Q.
- Risk Measure: identifiability of small cell counts.
- Utility: reconstructing table using log-linear models.
- Release rules must balance risk and utility:
 - R-U Confidentiality map.
- General Bayesian decision-theoretic approach.

Example 1: 2000 Census

- U.S. decennial census "long form"
 - 1 in 6 sample of households nationwide.
 - 53 questions, many with multiple categories.
 - Data measured with substantial error!
 - Data reported after application of data swapping!
- Geography
 - 50 states; 3,000 counties; 4 million "blocks".
 - Release of detailed geography yields uniqueness in sample and at some level in population.
- American Factfinder releases various 3-way tables at different levels of geography.

	Example 2: The Data							
	Б	P	C	B	no		yes	
F	E	D	C	A	no	yes	no	yes
ne g	< 3	< 140	no		44	40	112	67
			yes		129	145	12	23
		≥ 140	no		35	12	80	33
			yes		109	67	7	9
	≥ 3	< 140	no		23	32	70	66
			yes		50	80	7	13
		≥ 140	no		24	25	73	57
			yes		51	63	7	16
pos	< 3	< 140	no		5	7	21	9
			yes		9	17	1	4
		≥ 140	no		4	3	П	8
			yes		14	17	5	2
	≥ 3	< 140	no		7	3	14	14
			yes		9	16	2	3
		≥ 140	no	1	4	0	13	11
			VAC		5	14	4	4

Two-Way Fréchet Bounds

• For 2×2 tables of counts $\{n_{ij}\}$ given the marginal totals $\{n_{1+}, n_{2+}\}$ and $\{n_{+1}, n_{+2}\}$:

$$n_{11} n_{12} n_{1+} n_{21} n_{22} n_{21}$$

$$n_{+1} n_{+2} n$$

 $\min(n_{i+}, n_{+i}) \ge n_{ii} \ge \max(n_{i+} + n_{+i} - n, 0)$

 Interested in multi-way generalizations involving higher-order, overlapping margins.

Role of Log-linear Models? For 2×2 case, lower bound is evocative of MLE for estimated expected value under independence: *m̂*_{ij} = *n*_{i+}*n*_{+j} / *n*. Bounds correspond to log-linearized version. Margins are *minimal sufficient statistics (MSS)*. In 3-way table of counts, {*n*_{ijk}}, we model logs of expectations {E(*n*_{ijk})=*m*_{ijk}}: log(*m*_{ijk}) = *u* + *u*_{1(i)} + *u*_{2(j)} + *u*_{3(k)} + *u*_{12(ij)} + *u*_{13(ik)} + *u*_{23(jk)}

 MSS are margins corresponding to highest order terms: {n_{ij+}}, {n_{i+k}}, {n_{+jk}}.

Bounds for Multi-Way Tables *k*-way table of non-negative counts, *k* ≥ 3. Release set of marginal totals, possibly overlapping. *Goal*: Compute bounds for cell entries.

- LP and IP approaches are NP-hard.
- Our strategy has been to:
 - Develop efficient methods for several special cases.
 - Exploit linkage to statistical theory where possible.
 - $-\,$ Use general, less efficient methods for residual cases.
- Direct generalizations to tables with noninteger, non-negative entries.

MLEs for Decomposable Log-linear Models

 For decomposable models, expected cell values are explicit function of margins, corresponding to MSSs (*cliques* in graph):
 – For conditional independence in 3-way table:

 $\log m_{ijk} = u + u_{1(i)} + u_{2(j)} + u_{3(k)} + u_{12(ij)} + u_{13(ik)}$

$$m_{ijk} = \frac{m_{ij} + m_{i+k}}{m_{i+k}}$$

• Substitute observed margins for expected in explicit formula to get MLEs.

JU	ШU					A DA	\mathbf{T}	ГАТ	
		19 10)r	D	ր լլ			LAI	
				R		no		Ves	
F	Е	D	С	A	no	yes	no	yes	
neg	< 3	< 140	no		[0,88]	[0,62]	[0,224]	[0,117]	
			yes		[0,261]	[0,246]	[0,25]	[0,38]	
		≥ 140	no		[0,88]	[0,62]	[0,224]	[0,117]	
			yes		[0,261]	[0,151]	[0,25]	[0,38]	
	≥3	< 140	no		[0,58]	[0,60]	[0,170]	[0,148]	
			yes		[0,115]	[0,173]	[0, 20]	[0,36]	
		≥ 140	no		[0,58]	[0,60]	[0,170]	[0,148]	
			yes		[0,115]	[0,173]	[0,20]	[0,36]	
pos	< 3	< 140	no		[0,88]	[0,62]	[0,126]	[0,117]	
			yes		[0,134]	[0,134]	[0,25]	[0,38]	
		≥ 140	no		[0,88]	[0,62]	[0,126]	[0,117]	
			yes		[0,134]	[0,134]	[0,25]	[0,38]	
2	≥ 3	< 140	no		[0,58]	[0,60]	[0,126]	[0,126]	
			yes		[0,115]	[0,134]	[0,20]	[0,36]	
		≥ 140	no		[0,58]	[0,60]	[0,126]	[0,126]	

More on Bounds

- Extension for log-linear models and margins corresponding to reducible graphs.
- For 2^k tables with (k-1) dimensional margins fixed (need one extra bound here and it comes from log-linear model theory: existence of MLEs).
 - Extend to general k-way case by looking at all possible collapsed 2^k tables.
- General "shuttle" algorithm in Dobra (2002) works for all cases.
 - Also generates most special cases with limited extra computation.

Example 2: Release of All 5-way Margins

- Approach for 2×2×2 generalizes to 2^k table given (k-1)-way margins.
- In 2⁶ table, if we release all 5-way margins:
 - Almost identical upper and lower values; they all differ by 1.

24

- Only 2 feasible tables with these margins!
- UNSAFE!

Example 3: NLTCS

- 2¹⁶ table of ADL/IADLs with 65,536 cells:
 - 62,384 zero entries; 1,729 cells with count of "1" and 499 cells with count of "2".
 - *n*=21,574.
 - Largest cell count: 3,853---no disabilities.
- Used simulated annealing algorithm to search all decomposable models for "decomposable" model on frontier with max[upper bound – lower bound] >3.
- Acting as if these were population data. ²⁵

NLTCS Search Results

Decomposable frontier model: {[1,2,3,4,5,7,12], [1,2,3,6,7,12], [2,3,4,5,7,8], [1,2,4,5,7,11], [2,3,4,5,7,13], [3,4,5,7,9,13], [2,3,4,5,13,14], [2,4,5,10,13,14], [1,2,3,4,5,15], [2,3,4,5,8,16]}.
Has one 7-way and eight 6-way marginals.

26

Perturbation for Protection

- Perturbation preserving marginals involves a parallel set of results to those for bounds:
 - Markov basis elements for decomposable case requires only "simple" moves. (Dobra, 2002)
 - Efficient generation of Markov basis for reducible case. (Dobra and Sullivent, 2002)
 - Simplifications for 2^k tables ("binomials").
 - Rooted in ideas from likelihood theory for log-linear models and computational algebra of toric ideals.

Some Ongoing Research

- Queries in form of combinations of marginals and conditionals.
- Inferences from marginal releases.
- What information does the intruder really have?
- Record linkage and matching.
- Simplified cyclic perturbation distributions.
- Computational algebraic statistics.

29

31

The End

- Most papers available for downloading at http://www.niss.org http://www.stat.cmu.edu/~fienberg/disclosure.html
- Workshop on Computational Algebraic Statistics December 14 to 18, 2003, American Institute of Mathematics, Palo Alto, California
 http://aimath.org/ARCC/workshops/compalgstat.html

Summary

- Some fundamental abstractions for disclosure limitation.
- Results on bounds for table entries.
- Parallels for Markov bases for exact distributions and perturbation of tables.
- New theoretical links among disclosure limitation, statistical theory, and computational algebraic geometry.

30

Stochastic Perturbation Methods

- Some methods well-developed in statistical literature:
 - Matrix masking, including adding noise
 - Post-randomization
 - Randomized response after data are collected
 - Multiple Imputation
 - Sampling from full posterior distribution
 - Data swapping and constrained cyclic perturbation
- Key is full information on stochastic transformation for proper statistical inferences. 32

