Privacy Breaches in Privacy-Preserving Data Mining

Johannes Gehrke Department of Computer Science Cornell University

Joint work with Sasha Evfimievski (Cornell), Ramakrishnan Srikant (IBM), and Rakesh Agrawal (IBM)

Motivation: Information Spheres

Local information sphere

- Within each organization
- Continuously process distributed high-speed distributed data streams
- Online evaluation of thousands of triggers
- Storage/archival, data provenance of all data is important
- One view: The "real-time" enterprise
- Global information sphere
- Between organizations
- Share data in a privacy-preserving way

Global Information Sphere

Distributed privacy-preserving information integration and mining

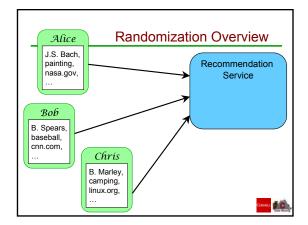
Technical challenges:

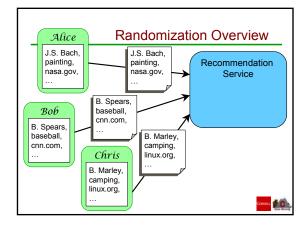
 Collaboration of different distributed parties without revealing private data

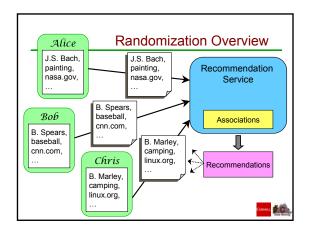
Data Mining and Privacy

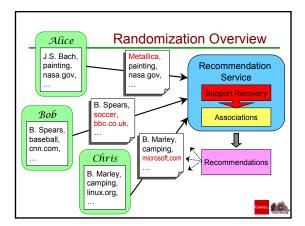
- The primary task in data mining: Develop models about aggregated data.
- Can we develop accurate models without access to precise information in individual data records?

··· C





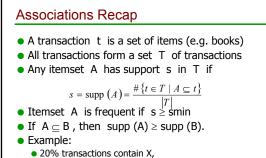




Associations Recap

- A transaction *t* is a set of items (e.g. books)
- All transactions form a set *T* of transactions
- Any itemset A has support s in T if $s = \operatorname{supp} (A) = \frac{\#\{t \in T \mid A \subseteq t\}}{|T|}$
- Itemset A is frequent if $s \ge s_{min}$
- If $A \subseteq B$, then supp (A) \ge supp (B).

3



• 5% transactions contain X and Y;

• Then: confidence of "X
$$\Rightarrow$$
 Y" is 5/20 = 0.25 = 25

The Problem

- How to randomize transactions so that
 we can find frequent itemsets
 - while preserving privacy at transaction level?

Talk Outline

- Problem Definition
- Uniform Randomization and Privacy Breaches
- Cut-and-Paste Randomization
- Experimental Evaluation
- Generalized Privacy Breaches

··· •

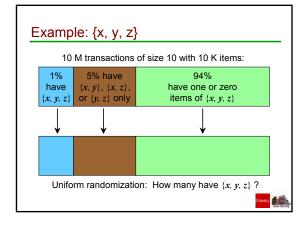
- C.C

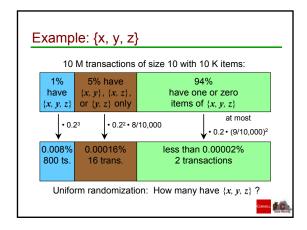
Uniform Randomization

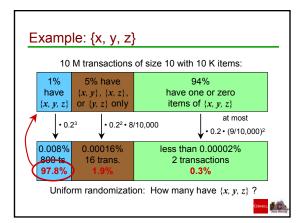
- Given a transaction,
 - keep item with 20% probability,
 - replace with a new random item with 80% probability.

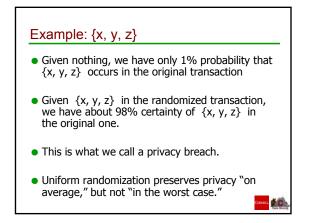
•• 0 C

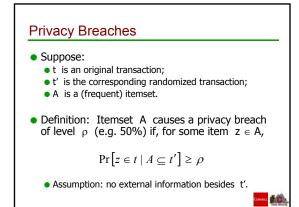
E	le: {x, y, z}	of size 10 with 10 K items:	
	5% have { <i>x</i> , <i>y</i> }, { <i>x</i> , <i>z</i> }, or { <i>y</i> , <i>z</i> } only	94% have one or zero items of $\{x, y, z\}$	
			Greenel Party March





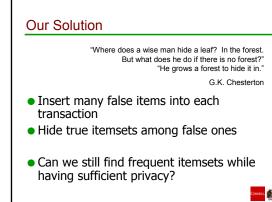


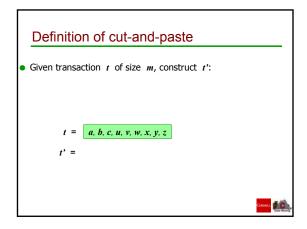


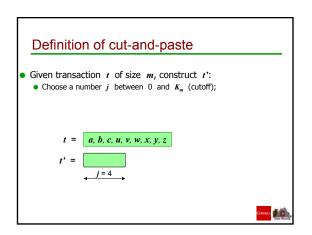


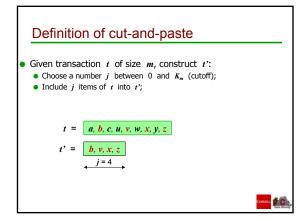
Talk Outline

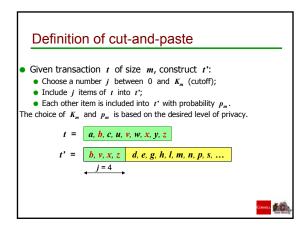
- Problem Definition
- Uniform Randomization and Privacy Breaches
- Cut-and-Paste Randomization
- Experimental Evaluation
- Generalized Privacy Breaches

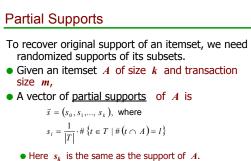








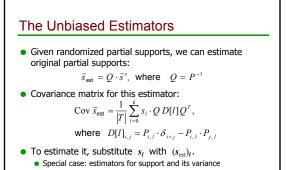




- Randomized partial supports are denoted by \vec{s}' .

Transition Matrix • Let k = |A|, m = |t|. • <u>Transition matrix</u> P = P(k, m) connects randomized partial supports with original ones: $\mathbf{E} \vec{s}' = P \cdot \vec{s}$, where $P_{l',l} = \Pr\left[\#(t' \cap A) = l' \,|\, \#(t \cap A) = l\right]$ • Randomized supports are distributed as a sum of multinomial distributions.

au gi C



Class of Randomizations

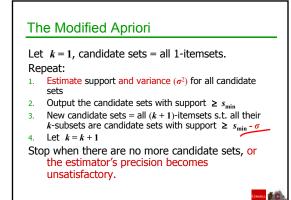
- Our analysis works for any randomization that satisfies two properties:
 - A per-transaction randomization applies the same procedure to each transaction, using no information about other transactions;
 - An item-invariant randomization does not depend on any ordering or naming of items.
- Both uniform and cut-and-paste randomizations satisfy these two properties.

Apriori

Let k = 1, candidate sets = all 1-itemsets. Repeat:

- 1. Count support for all candidate sets
- 2. Output the candidate sets with support \geq s_{min}
- 3. New candidate sets = all (k + 1)-itemsets s.t. all their k-subsets are candidate sets with support \geq smin
- 4. Let k = k + 1

Stop when there are no more candidate sets.



Privacy Breach Analysis

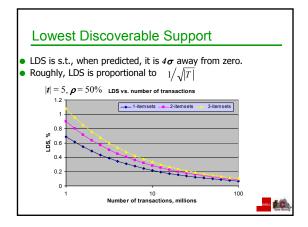
- How many added items are enough to protect privacy? • Have to satisfy $\Pr[z \in t | A \subseteq t'] \leq \rho$ (\Leftrightarrow no privacy breaches)
 - Select parameters so that it holds for all itemsets. Use formula $s_l^* = \Pr[\#(t \cap A) = l, z \in l], s_l^* = 0$ $k = |A|, P_{t',l} = \Pr[\#(t' \cap A) = l' | \#(t \cap A) = l]$

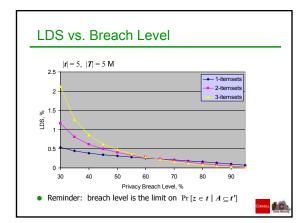
$$\Pr[z \in t \mid A \subseteq t'] = \sum_{l=0}^{k} s_l^+ \cdot P_{k,l} / \sum_{l=0}^{k} s_l \cdot P_{k,l}$$

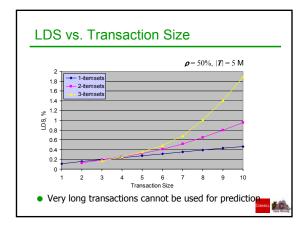
- Parameters are to be selected in advance!
 - Construct a privacy-challenging test: an itemset such that all subsets have maximum possible support.
 - Need to know maximal support of an itemset for each size.

Pros and Cons

- Strength: Graceful tradeoff between precision and privacy Adjust privacy breach level
 - A small relaxation of privacy restrictions results in a small increase in precision of estimators.
- Weakness: No firm guarantee against breaches Is the "privacy-challenging test" challenging enough?
 - Solution: Amplification.
- Weakness: We still need to know something about the prior distribution
 - The definition of breaches needs adjustment
 - Solution: Amplification.
- Weakness: The server has to do a lot more work
 - Can we compress long transactions? Solution: Use error-correcting codes







Talk Outline

- Problem Definition
- Uniform Randomization and Privacy Breaches
- Cut-and-Paste Randomization
- Experimental Evaluation
- Generalized Privacy Breaches

Real datasets: soccer, mailorder

 <u>Soccer</u> is the clickstream log of WorldCup'98 web site, split into sessions of HTML requests.
 11 K items (HTMLs), 6.5 M transactions

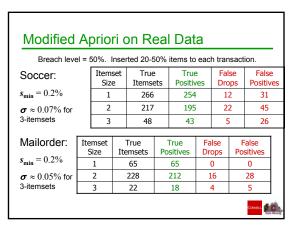
••• 🖉 C

" C

- Available at http://www.acm.org/sigcomm/ITA/
- <u>Mailorder</u> is a purchase dataset from a certain on-line store
 - Products are replaced with their categories
 - 96 items (categories), 2.9 M transactions

A small fraction of transactions are discarded as too long.

longer than 10 (for soccer) or 7 (for mailorder)



False Drops False Positives											
'	Soccer										
Pre	Pred. supp%, when true supp $\geq 0.2\%$ True supp%, when pred. supp $\geq 0.2\%$										
Size	<	0.1	0.1-0.15	0.15-0.2	≥0.2	1	Size	< 0.1	0.1-0.15	0.15-0.2	≥0.2
1		0	2	10	254		1	0	7	24	254
2		0	5	17	195		2	7	10	28	195
3		0	1	4	43		3	5	13	8	43
$\label{eq:mail_order} Mailorder$ Pred. supp%, when true supp $\geq 0.2\%$ True supp%, when pred. supp $\geq 0.2\%$											
Si	ze	< 0.1	1 0.1-0.1	5 0.15-0.	2 ≥0	.2	Size	< 0.1	0.1-0.15	0.15-0.2	≥0.2
	1	0	0	0	6	5	1	0	0	0	65
	2	0	1	15	21	2	2	0	0	28	212
	3	0	1	3	1	8	3	1	2	2 (199	

Actual Privacy Breaches

- Verified actual privacy breach levels
- The breach probabilities are counted in the datasets for frequent and near-frequent itemsets.
- If maximum supports were estimated correctly, even worst-case breach levels fluctuated around 50%
 - At most 53.2% for soccer,
 - At most 55.4% for mailorder.

Talk Outline

- Problem Definition
- Uniform Randomization and Privacy Breaches
- Cut-and-Paste Randomization
- Experimental Evaluation
- General Privacy Breaches

Classes of Privacy Breaches: Example

- Assume that private information is a single item
 - $x \in \{0, ..., 1000\}$. Chosen such that
 - P[X=0]=0.01
 - P[X=k]=0.00099, k=1,...,1000
- We would like randomize x by replacing it with y=R(x)
- Three example randomization operators:
 - R1(x)=x with 20% probability, uniform random choice otherwise • R2(x)=x + e (mod 1001), where e chosen uniformly at random
 - in {-100,...,100}
 R3(x) = R2(x) with 20% probability, uniform random choice otherwise

Example (Contd.)

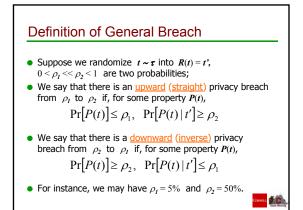
Given	X=0	X not in {200,,800}
Nothing	1%	40.5%
R1(x)=0	71.6%	83.0
R2(x)=0	4.8%	100%
R3(x)=0	2.9%	70.8%

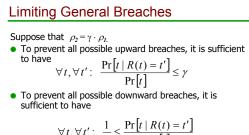
Recall:

- R1(x)=x with 20% probability, uniform random choice otherwise
- R2(x)=x + e (mod 1001), where e chosen uniformly at random in $\{-100,...,100\}$
- R3(x) = R2(x) with 20% probability, uniform random choice otherwise

Two Kinds of Breaches

- Property P(t) was unlikely, but becomes likely once we see t'
 - Example: $X=\theta$ was 1% likely, but becomes 71.6% likely given that R1(X)=0.
- Property *P*(*t*) was uncertain, but becomes virtually certain once we see *t*'
 - Example: $X \notin \{200,...,1000\}$ was 40.5% likely, but becomes 100% likely given that R2(X)=0.
 - Can think of it inversely: $X \in \{200,...,1000\}$ was 59.5% likely, but becomes only 0% likely given that R2(X)=0.





$$\forall t, \forall t': \quad \frac{1}{\gamma} \le \frac{\Pr[t \mid R(t) = t']}{\Pr[t]}$$

• We call a privacy breach that violates one of the above a $\gamma\text{-privacy breach}.$

 $\bullet\,$ Thus to prevent all possible $\gamma\text{-privacy breaches},$ we need to have

$$\forall t, \forall t': \quad \frac{1}{\gamma} \leq \frac{\Pr[t \mid R(t) = t']}{\Pr[t]} \leq \gamma$$

- C

Amplification

- Inequality $\forall t, \forall t': \frac{1}{\gamma} \leq \frac{\Pr[t \mid R(t) = t']}{\Pr[t]} \leq \gamma$ sounds good, but...
 - There are way too many possibilities for *t* to check.
 - We do not know Pr [t] in advance! What to do?

<u>Amplification Theorem:</u>

Revealing R(t) will cause neither an upward nor downward γ -privacy breach if the following condition is satisfied:

$$\frac{\rho_2}{\rho_1} \cdot \frac{1-\rho_1}{1-\rho_2} \le \gamma$$

Summary

- Privacy breaches: Provided a solution for controlling general breaches
- Algorithm for discovering associations in randomized data
- Validated on real-life datasets
- Can find associations while preserving privacy at the level of individual transactions
- Opens lots of interesting issues.

. 20

Ongoing Work and Open Problems

Ongoing work:

- Compression of long transactions
- More sophisticated notions of privacy
- Other data mining models
- Privacy-preserving information integration across different relations and organizations
- Usage of cryptographic techniques

Publications in ACM SIGKDD 2002

[ESA+02] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy-Preserving Association Rule Mining.
[DG02] A. Dobra and J. Gehrke. Scalable Regression Tree

- Construction. [DGS02] S. Ben-David, J. Gehrke, and R. Schuller. Learning From
- Multiple Heterogeneous Sources. [AGYF02] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. SPAM: Mining Sequential Pattern Using Bitmaps.
- [BGK+02] C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual Pruning Algorithm for Mining with Constraints

insul Co

More work recently accepted at PODS 2003 and SIGMOD 2003.

