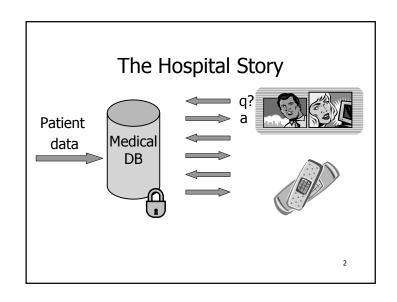
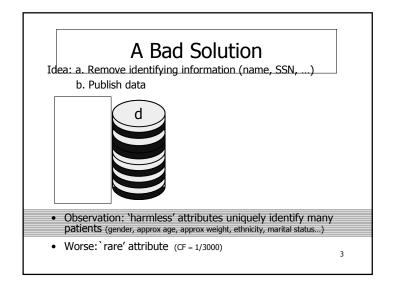
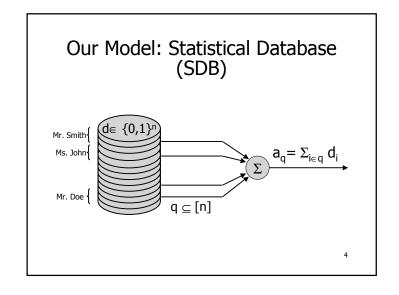
Revealing Information while Preserving Privacy

Kobbi Nissim NEC Labs, DIMACS

Based on work with:
Irit Dinur, Cynthia Dwork and Joe Kilian







The Privacy Game: Information-Privacy Tradeoff

- Private functions:
 - want to hide $\pi_i(d_1, \dots, d_n) = d_i$
- Information functions:
 - want to reveal $f_q(d_1, ..., d_n) = \sum_{i \in q} d_i$
- Explicit definition of private functions
- Crypto: secure function evaluation
 - want to reveal f()
 - want to hide all functions $\pi()$ not computable from f()
 - Implicit definition of private functions

5

Approaches to SDB Privacy [AW 89]

- Query Restriction
 - Require queries to obey some structure
- Perturbation
 - $\boldsymbol{\mathsf{-}}$ Give 'noisy' or 'approximate' answers

This talk

6

Perturbation

• Database: $d = d_1,...,d_n$

 $\bullet \ \text{Query:} \ q \subseteq [n]$

• Exact answer: $a_q = \Sigma_{i \in q} d_i$

 \bullet Perturbed answer: \hat{a}_{q}

Perturbation E:

For all q: $|\hat{a}_q - a_q| \le E$

General Perturbation:

$$Pr_q [|\hat{a}_q - a_q| \le E] = 1-neg(n)$$

= 99%, 51%

7

Perturbation Techniques [AW89]

Data perturbation:

- Swapping [Reiss 84][Liew, Choi, Liew 85]
- Fixed perturbations [Traub, Yemini, Wozniakowski 84] [Agrawal, Srikant 00] [Agrawal, Aggarwal 01]
 - Additive perturbation d'_i=d_i+E_i

Output perturbation:

- Random sample queries [Denning 80]
 - · Sample drawn from query set
- Varying perturbations [Beck 80]
 - Perturbation variance grows with number of queries
- Rounding [Achugbue, Chin 79] Randomized [Fellegi, Phillips 74] \dots

Privacy from $\approx \sqrt{n}$ Perturbation (an example of a useless database) • Database: $d \in {}_{R} \{0,1\}^{n}$ • On query q: 1. Let $a_q = \sum_{i \in q} d_i$ 2. If $|a_q - |q|/2| > E$ return $\hat{a}_q = a_q$ 3. Otherwise return $\hat{a}_q = |q|/2$ • Privacy is preserved - If $E \cong \sqrt{n} (lgn)^2$, whp always • No information about d i • No usability! Can we do better? • Smaller E? • Usability ???

(not) Defining Privacy

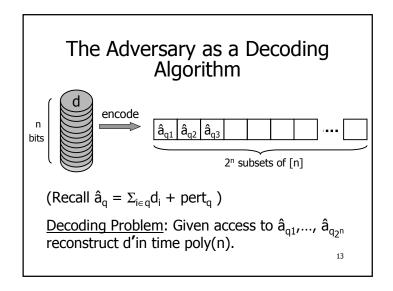
- Elusive definition
 - Application dependent
 - Partial vs. exact compromise
 - Prior knowledge, how to model it?
 - Other issues ...
- Instead of defining privacy: What is surely non-private...
 - Strong breaking of privacy

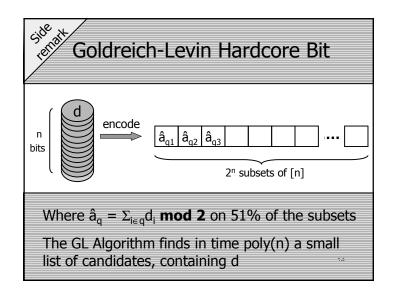
The Useless Database Achieves
Best Possible Perturbation:
Perturbation << √n Implies no
Privacy!

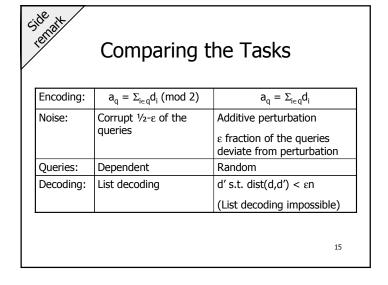
• <u>Main Theorem</u>:

Given a DB response algorithm with perturbation $E << \sqrt{n}$, there is a polytime reconstruction algorithm that outputs a database d', s.t. dist(d,d') < o(n).

Strong Breaking of Privacy







Recall Our Goal: Perturbation << √n Implies no Privacy!

Main Theorem:
 Given a DB response algorithm with
 perturbation E < √n, there is a poly-time
 reconstruction algorithm that outputs a
 database d', s.t. dist(d,d') < o(n).

Proof of Main Theorem The Adversary Reconstruction Algorithm

- Query phase: Get â_{qi} for t random subsets q₁,...,q_t of [n]
- Weeding phase: Solve the Linear Program:

$$0 \le x_i \le 1$$

$$|\Sigma_{i \in q_i} x_i - \hat{a}_{q_i}| \le E$$

• Rounding: Let c_i = round(x_i), output c

Observation: An LP solution always exists, e.g. x=d.

17

Extensions of the Main Theorem

- `Imperfect' perturbation:
 - Can approximate the original bit string even if database answer is within perturbation only for 99% of the queries
- Other information functions:
 - Given access to "noisy majority" of subsets we can approximate the original bit-string.

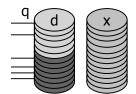
19

Proof of Main Theorem Correctness of the Algorithm

Consider x=(0.5,...,0.5) as a solution for the LP

Observation: A random q often shows a \sqrt{n} advantage either to 0's or to 1's.

- Such a q disqualifies x as a solution for the LP
- We prove that if $dist(x,d) > \epsilon \cdot n$, then whp there will be a q among $q_1,...,q_t$ that disqualifies x



18

Notes on Impossibility Results

- Exponential Adversary:
 - Strong breaking of privacy if E << n
- Polynomial Adversary:
 - Non-adaptive queries
 - Oblivious of perturbation method and database distribution
 - Tight threshold E \cong √n
- What if adversary is more restricted?

Bounded Adversary Model

• Database: d∈_R{0,1}ⁿ

 Theorem: If the number of queries is bounded by T, then there is a DB response algorithm with perturbation of ~√T that maintains privacy.

With a reasonable definition of privacy

21

Summary and Open Questions

- Very high perturbation is needed for privacy
 - Threshold phenomenon above \sqrt{n} : total privacy, below \sqrt{n} : none (poly-time adversary)
 - Rules out many currently proposed solutions for SDB privacy
 - Q: what's on the threshold? Usability?
- Main tool: A reconstruction algorithm
 - Reconstructing an n-bit string from perturbed partial sums/thresholds
- Privacy for a T-bounded adversary with a random database
 - √T perturbation
 - Q: other database distributions
- Q: Crypto and SDB privacy?

2

Our Privacy Definition (bounded adversary model) $d_{\text{de}_{R}}\{0,1\}^{n}$ d_{i} $d_{\text{v.p.}} > \frac{1}{1/2-\epsilon}$

