

Approaches to distributed privacy protecting data mining

Bartosz Przydatek

CMU

Introduction

Oata Mining and Privacy Protection → conflicting goals

Introduction

- 6 Data Mining and Privacy Protection → conflicting goals
- 6 Conflict Resolution: Inference Control
- Inference Control Techniques
 - Controlled Release
 - Input/Output Perturbation
 - Query Restriction & Auditing
 - Δ . . .

Introduction

- Oata Mining and Privacy Protection → conflicting goals
- 6 Conflict Resolution: Inference Control
- Inference Control Techniques
 - Controlled Release
 - Input/Output Perturbation
 - Query Restriction & Auditing
 - Δ . . .
- Oistributed data mining old and new challenges

Outline

- What does "privacy" mean?
- Perturbation techniques
- Secure Multi-Party Computation (MPC)
- 6 Privacy by secure MPC
- 6 Conclusions

What Does "Privacy" Mean?

- Intuitively, it seems to be clear . . .
- Exact vs. partial disclosure

What Does "Privacy" Mean?

- 6 Intuitively, it seems to be clear . . .
- 6 Exact vs. partial disclosure
- Quantifying Privacy
 - Interval width for a confidence level [Agrawal, Srikant 2000]
 - Information theoretic approach [Agrawal, Aggarwal 2001]
 - Game theoretic approach [Kleinberg, Papadimitriou, Raghavan 2001]

What Does "Privacy" Mean?

- Intuitively, it seems to be clear . . .
- 6 Exact vs. partial disclosure
- 6 Quantifying Privacy
 - Interval width for a confidence level [Agrawal, Srikant 2000]
 - Information theoretic approach [Agrawal, Aggarwal 2001]
 - Game theoretic approach [Kleinberg, Papadimitriou, Raghavan 2001]
- 6 Privacy in secure multi-party computation

Privacy by Perturbation

- Studied extensively in the context of single databases
- Can be applied in distributed setting

Privacy by Perturbation

- Studied extensively in the context of single databases
- 6 Can be applied in distributed setting
- Various techniques
 - randomized input distortion
 - output perturbation

Problems with Perturbations

- 6 Bias, precision & consistency
- Can be computationally challenging
- Outlier removal & "blurring" the data → detection of anomalies?
- Combining multiple versions of data released for different purposes

Secure Multi-Party Computation

- Introduced by Yao in 1982, inspired by "coin-flipping" (Blum) and "mental poker" (Shamir, Rivest, Adleman)
- of m parties P_1, \ldots, P_m want to compute $f(x_1, \ldots, x_m)$, where x_i is a private input of P_i , without revealing more than necessary . . .

Secure Multi-Party Computation

- Introduced by Yao in 1982, inspired by "coin-flipping" (Blum) and "mental poker" (Shamir, Rivest, Adleman)
- of m parties P_1, \ldots, P_m want to compute $f(x_1, \ldots, x_m)$, where x_i is a private input of P_i , without revealing more than necessary ...
- 6 ... i.e., simulation of a trusted party!

Secure Multi-Party Computation

- Introduced by Yao in 1982, inspired by "coin-flipping" (Blum) and "mental poker" (Shamir, Rivest, Adleman)
- of m parties P_1, \ldots, P_m want to compute $f(x_1, \ldots, x_m)$, where x_i is a private input of P_i , without revealing more than necessary ...
- 6 ... i.e., simulation of a trusted party!
- 6 A very general and powerful tool, various models
- Efficient completeness results: [Yao'86] (2-party), [GMW'87] (crypt.) and [BGW+CCD'88] (uncond.)

Privacy by Multi-Party Computation

MPC "creates" a trusted party!

Privacy by Multi-Party Computation

- MPC "creates" a trusted party!
- 6 Problems:
 - Efficiency → communication complexity

Privacy by Multi-Party Computation

- MPC "creates" a trusted party!
- 6 Problems:
 - Efficiency → communication complexity
 - Does it really solve the privacy problem?

Efficient MPC Solutions

- 6 Efficient special purpose protocols
 - Learning decision trees [Lindell, Pinkas 2000]

Efficient MPC Solutions

- 6 Efficient special purpose protocols
 - Learning decision trees [Lindell, Pinkas 2000]
- 6 Private approximations
 - Introduced by [FIMNSW 2000]
 - A tradeoff between privacy and approximability [Halevi, Krauthgamer, Kushilevitz, Nissim, 2001]
 - Some functions cannot be computed with low communication (set equality vs. set disjointness)

Efficient MPC Solutions

- 6 Efficient special purpose protocols
 - Learning decision trees [Lindell, Pinkas 2000]
- 6 Private approximations
 - Introduced by [FIMNSW 2000]
 - A tradeoff between privacy and approximability [Halevi, Krauthgamer, Kushilevitz, Nissim, 2001]
 - Some functions cannot be computed with low communication (set equality vs. set disjointness)
- 6 A different approach to MPC?

Which queries preserve privacy?

Which queries preserve privacy?

- Query restriction
 - query-set-size, query-set-overlap
 - query auditing
 - partitioning

Which queries preserve privacy?

- Query restriction
 - query-set-size, query-set-overlap
 - query auditing
 - partitioning
- Query auditing
 - efficient in simple cases
 - a NP-hard problem in general [Kleinberg, Papadimitriou, Raghavan 2001]

Conclusions

- "Privacy" means . . .
- Various approaches, problem dependent
- Probably no "the best" single solution
- Still a lot of work to be done