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Introduction

Data Mining and Privacy Protection → conflicting goals

Conflict Resolution: Inference Control

Inference Control Techniques
Controlled Release
Input/Output Perturbation
Query Restriction & Auditing
. . .

Distributed data mining – old and new challenges
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Outline

What does “privacy” mean?

Perturbation techniques

Secure Multi-Party Computation (MPC)

Privacy by secure MPC

Conclusions
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What Does “Privacy” Mean?

Intuitively, it seems to be clear . . .

Exact vs. partial disclosure

Quantifying Privacy
Interval width for a confidence level
[Agrawal, Srikant 2000]
Information theoretic approach
[Agrawal, Aggarwal 2001]
Game theoretic approach
[Kleinberg, Papadimitriou, Raghavan 2001]

Privacy in secure multi-party computation
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Privacy by Perturbation

Studied extensively in the context of single databases

Can be applied in distributed setting

Various techniques
randomized input distortion
output perturbation
k-anonymity [Sweeney ’98]
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Problems with Perturbations

Bias, precision & consistency

Can be computationally challenging

Outlier removal & “blurring” the data → detection of
anomalies?

Combining multiple versions of data released for
different purposes
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Secure Multi-Party Computation

Introduced by Yao in 1982, inspired by “coin-flipping”
(Blum) and “mental poker” (Shamir, Rivest, Adleman)

m parties P1, . . . , Pm want to compute f(x1, . . . , xm),
where xi is a private input of Pi, without revealing more
than necessary . . .

. . . i.e., simulation of a trusted party!

A very general and powerful tool, various models

Efficient completeness results: [Yao’86] (2-party),
[GMW’87] (crypt.) and [BGW+CCD’88] (uncond.)
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Privacy by Multi-Party Computation

MPC “creates” a trusted party!

Problems:
Efficiency → communication complexity
Does it really solve the privacy problem?
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Efficient MPC Solutions

Efficient special purpose protocols
Learning decision trees [Lindell, Pinkas 2000]

Private approximations
Introduced by [FIMNSW 2000]
A tradeoff between privacy and approximability
[Halevi, Krauthgamer, Kushilevitz, Nissim, 2001]
Some functions cannot be computed with low
communication (set equality vs. set disjointness)

A different approach to MPC?
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Which queries preserve privacy?

Query restriction
query-set-size, query-set-overlap
query auditing
partitioning

Query auditing
efficient in simple cases
a NP-hard problem in general
[Kleinberg, Papadimitriou, Raghavan 2001]
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Conclusions

“Privacy” means . . .

Various approaches, problem dependent

Probably no “the best” single solution

Still a lot of work to be done
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