Approaches to distributed privacy protecting data mining

Bartosz Przydatek

CMU
Introduction

Data Mining and Privacy Protection → conflicting goals
Data Mining and Privacy Protection → conflicting goals

Conflict Resolution: Inference Control

Inference Control Techniques
- Controlled Release
- Input/Output Perturbation
- Query Restriction & Auditing
- ...
Introduction

- Data Mining and Privacy Protection → conflicting goals
- Conflict Resolution: Inference Control
- Inference Control Techniques
 - Controlled Release
 - Input/Output Perturbation
 - Query Restriction & Auditing
 - ...
- Distributed data mining – old and new challenges
Outline

- What does “privacy” mean?
- Perturbation techniques
- Secure Multi-Party Computation (MPC)
- Privacy by secure MPC
- Conclusions
What Does “Privacy” Mean?

- Intuitively, it seems to be clear...
- Exact vs. partial disclosure
What Does “Privacy” Mean?

- Intuitively, it seems to be clear . . .
- Exact vs. partial disclosure
- Quantifying Privacy
 - Interval width for a confidence level
 [Agrawal, Srikant 2000]
 - Information theoretic approach
 [Agrawal, Aggarwal 2001]
 - Game theoretic approach
 [Kleinberg, Papadimitriou, Raghavan 2001]
What Does “Privacy” Mean?

- Intuitively, it seems to be clear . . .

- Exact vs. partial disclosure

- Quantifying Privacy
 - Interval width for a confidence level
 [Agrawal, Srikant 2000]
 - Information theoretic approach
 [Agrawal, Aggarwal 2001]
 - Game theoretic approach
 [Kleinberg, Papadimitriou, Raghavan 2001]

- Privacy in secure multi-party computation
Privacy by Perturbation

- Studied extensively in the context of single databases
- Can be applied in distributed setting
Privacy by Perturbation

- Studied extensively in the context of single databases
- Can be applied in distributed setting
- Various techniques
 - randomized input distortion
 - output perturbation
 - k-anonymity [Sweeney ’98]
Problems with Perturbations

- Bias, precision & consistency
- Can be computationally challenging
- Outlier removal & “blurring” the data → detection of anomalies?
- Combining multiple versions of data released for different purposes
Secure Multi-Party Computation

- Introduced by Yao in 1982, inspired by “coin-flipping” (Blum) and “mental poker” (Shamir, Rivest, Adleman)
- m parties P_1, \ldots, P_m want to compute $f(x_1, \ldots, x_m)$, where x_i is a private input of P_i, without revealing more than necessary ...
Secure Multi-Party Computation

- Introduced by Yao in 1982, inspired by “coin-flipping” (Blum) and “mental poker” (Shamir, Rivest, Adleman)

- m parties P_1, \ldots, P_m want to compute $f(x_1, \ldots, x_m)$, where x_i is a private input of P_i, without revealing more than necessary . . .

- . . . i.e., simulation of a trusted party!
Secure Multi-Party Computation

- Introduced by Yao in 1982, inspired by “coin-flipping” (Blum) and “mental poker” (Shamir, Rivest, Adleman)

- m parties P_1, \ldots, P_m want to compute $f(x_1, \ldots, x_m)$, where x_i is a private input of P_i, without revealing more than necessary . . .

- . . . i.e., simulation of a trusted party!

- A very general and powerful tool, various models

- Efficient completeness results: [Yao’86] (2-party), [GMW’87] (crypt.) and [BGW+CCD’88] (uncond.)
Privacy by Multi-Party Computation

- MPC “creates” a trusted party!
Privacy by Multi-Party Computation

- MPC “creates” a trusted party!
- Problems:
 - Efficiency \rightarrow communication complexity
Privacy by Multi-Party Computation

MPC “creates” a trusted party!

Problems:
- Efficiency \rightarrow communication complexity
- Does it really solve the privacy problem?
Efficient MPC Solutions

- Efficient special purpose protocols
 - Learning decision trees [Lindell, Pinkas 2000]
Efficient MPC Solutions

- Efficient special purpose protocols
 - Learning decision trees [Lindell, Pinkas 2000]

- Private approximations
 - Introduced by [FIMNSW 2000]
 - A tradeoff between privacy and approximability [Halevi, Krauthgamer, Kushilevitz, Nissim, 2001]
 - Some functions cannot be computed with low communication (set equality vs. set disjointness)
Efficient MPC Solutions

- Efficient special purpose protocols
 - Learning decision trees [Lindell, Pinkas 2000]

- Private approximations
 - Introduced by [FIMNSW 2000]
 - A tradeoff between privacy and approximability [Halevi, Krauthgamer, Kushilevitz, Nissim, 2001]
 - Some functions cannot be computed with low communication (set equality vs. set disjointness)

- A different approach to MPC?
Which queries preserve privacy?
Which queries preserve privacy?

- Query restriction
 - query-set-size, query-set-overlap
 - query auditing
 - partitioning

[Note: Additional content refers to specific queries and privacy issues, but is not highlighted in the image provided.]
Which queries preserve privacy?

- Query restriction
 - query-set-size, query-set-overlap
 - query auditing
 - partitioning

- Query auditing
 - efficient in simple cases
 - a NP-hard problem in general
 [Kleinberg, Papadimitriou, Raghavan 2001]
Conclusions

- “Privacy” means . . .
- Various approaches, problem dependent
- Probably no “the best” single solution
- Still a lot of work to be done