

Theorem: Channel codes are DRQS attacks and vice versa

A code is

- a (binary) function from M message words to n code bits
- an estimation function from n bits to one of M message words
- The only difference between codes and DRQS attacks is that the coding entity in the communication channel knows the bits
- The tracker does not know the bits, but forces a pattern among them through the queries

Poorvi Vora/CTO/IPG/HP 01/03

8

What kind of information transfer do DRQS attack provide?	S
Recall: repetition attack sacrificed rate (1/n) for accuracy	
Does looking at more than one target bit at a time help the tracker?	;
Can he maintain the rate of a DRQS attack while decreasing estimation error?	
i.e., Can he maintain k/n while $\epsilon_n \to 0$	
Pooni Vora/CTO/RG/HP 0103	q

Existence of reliable DRQS attacks

- Shannon (1948): Codes exist for reliable transmission at all rates below capacity
- Forney (1966): Existence of polynomial-time encodable and decodable Shannon codes
- Spielman (1995): Construction of linear-time encodable and decodable codes approaching Shannon codes
- \Rightarrow Corollary: Construction methods for linear time DRQS attacks with k/n approaching C while $\epsilon_n \rightarrow 0$

11

Poorvi Vora/CTO/IPG/HP 01/03

Shannon (1948) Channel Coding ("second") Theorem Existence result; tight upper bound on transmission efficiency	
(Really only weak law of large numbers)	
Codes exist for reliable transmission at all rates below capacity	
A channel cannot transmit reliably at rates above capacity.	
Reliable transmission <i>defined as</i> decreasing error arbitrarily while maintaining rate	
Peervi VoraCTOIPGHP 0103 1	0

This work was influenced by conversations with	
Umesh Vazirani	
Gadiel Seroussi	
Cormac Herley	
Poonvi VoravCTO/IPG/HP 01/03	7