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Abstract

Many graphs arising in various information networks exhibit the “power law” behavior –
the number of vertices of degree k is proportional to k−β for some positive β. We show that
if β > 2.5, the largest eigenvalue of a random power law graph is almost surely (1 + o(1))

√
m

where m is the maximum degree. Moreover, the k largest eigenvalues of a random power law
graph with exponent β have power law distribution with exponent 2β − 1 if the maximum
degree is sufficiently large, where k is a function depending on β, m and d, the average degree.
When 2 < β < 2.5, the largest eigenvalue is heavily concentrated at cm3−β for some constant c
depending on β and the average degree. This result follows from a more general theorem which
shows that the largest eigenvalue of a random graph with a given expected degree sequence
is determined by m, the maximum degree, and d̃, the weighted average of the squares of the
expected degrees. We show that the k-th largest eigenvalue is almost surely (1 + o(1))

√
mk

where mk is the k-th largest expected degree provided mk is large enough. These results have
implications on the usage of spectral techniques in many areas related to pattern detection and
information retrieval.

1 Introduction

Although graph theory has a history of more than 250 years, it is only very recently noted that the
so-called “power law” is prevalent in realistic graphs arising in numerous arenas. Graphs with power
law degree distribution are ubiquitous as observed in the Internet, the telecommunications graphs,
email graphs and in various biological networks [2, 3, 4, 8, 12, 13, 14]. One of the basic problems
concerns the distribution of the eigenvalues of power law graphs. In addition to theoretical interest,
spectral methods are central in detecting clusters and finding patterns in various applications.

The eigenvalues of the adjacency matrices of various realistic power law graphs were computed
and examined in [8, 9, 11]. Faloutsos et. al. [8] conjectured a power law distribution for eigenvalues
of power law graphs. For a fixed value β > 1, we say that a graph is a power law graph with
exponent β if the number of vertices of degree k is proportional to k−β. We note that for most
realistic graphs, their power law models usually have exponents β falling between 2 and 3. For
example, various Internet graphs [13] have exponents between 2.1 and 2.4. The Hollywood graph
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[4] has exponent β ∼ 2.3. The telephone call graphs [1] has exponet β = 2.1. Recently, Mihail and
Papadimitriou [16] showed that the largest eigenvalues of a power law graph with exponent β has
power law distribution if the exponent β of the power law graph satisfies β > 3.

In this paper, we will show that the largest eigenvalue λ of the adjacency matrix of a random
power law graph is almost surely approximately the square root of the maximum degree m if β >
2.5, and the k largest eigenvalues of a random power law graph with exponent β have power law
distribution with exponent β/2 if m is sufficiently large and k is small (to be specified later). When
2 < β < 2.5. the largest eigenvalue of the adjacency matrix of a random power law graph is almost
surely approximately cm3−β A phase transition occurs at β = 2.5. This result for power law graphs
is an immediate consequence of a general result for eigenvalues of random graphs with arbitrary
degree distribution.

We will use a random graph model from [5], which is a generalization of the Erdős-Rényi model,
for random graphs with given expected degrees w1, w2, . . . , wn. The largest eigenvalue λ1 of the
adjacency matrix of a random graph in this model depends on two parameters – the maximum
degree m and the second order average degree d̃ defined by

d̃ =
∑n

i=1 w2
i∑n

i=1 wi
.

It has turned out that λ1 is almost surely (1+ o(1))
√

m if
√

m is greater than d̃ by a factor of log2 n
and λ1 is almost surely (1 + o(1))d̃ if

√
m is smaller than d̃ by a factor of log n. In other words, λ

is (asymptotically) the maximum of
√

m and d̃ if the two values of
√

m and d are far apart (by a
power of log n). Furthermore, If the k-th largest expected degree mk is greater than d̃ by a factor
of log n, then the largest k eigenvalues are (1 + o(1))

√
mk.

One might be tempted to conjecture that

λ1 = (1 + o(1))max{√m, d̃}.
This, however, is not true as shown by a counter example in the last section. Throughout the paper,
the asymptotic notation is used under the assumption that n → ∞. We say that an event holds
almost surely, if the probability that it holds tends to 1 as n tends to infinity.

Following the discussion in Mihail and Papadimitriou [16], our result has the following impli-
cations: The largest degree is a “local” aspect of a graph. If the largest eigenvalue depends only
on the largest degree, spectral analysis of the Internet topology or spectral filtering for information
retrieval can only be effective after high degree nodes have been normalized. Our result implies that
such negative implications occurs only when the exponent β exceeds 2.5.

2 Preliminaries

The primary model for classical random graphs is the Erdős-Rényi model Gp, in which each edge is
independently chosen with the probability p for some given p > 0 (see [7]). In such random graphs
the degrees (the number of neighbors) of vertices all have the same expected value. Here we consider
the following extended random graph model for a general degree distribution.

For a sequence w = (w1, w2, . . . , wn), We consider random graphs G(w) in which edges are
independently assigned to each pair of vertices (i, j) with probability wiwjρ, where ρ = 1P

n
i=1 wi

.
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Notice that we allow loops in our model (for computational convenience) but their presence does
not play any essential role. It is easy to verify that the expected degree of i is wi.

To this end, we assume that maxi w2
i <

∑
k wk so that pij ≤ 1 for all i and j. This assumption

assures that the sequence wi is graphical (in the sense that it satisfies the necessary and sufficient
condition for a sequence to be realized by a graph [6]) except that we do not require the wi’s to be
integers). We will use di to denote the actual degree of vi in a random graph G in G(w) where the
weight wi denotes the expected degree.

For a subset S of vertices, the volume Vol(S) is defined as the sum of weights in S. That is
Vol(S) =

∑
i∈S wi. In particular, we have Vol(G) =

∑
i wi, and we denote ρ = 1

Vol(G) . The induced
subgraph on S is a random graph G(w′) where the weight sequence is given by w′

i = wiVol(S)ρ for
all i ∈ S. The second order average degree of G(w′) is simply

∑
i∈S w2

i ρ.

The classical random graph G(n, p) can be viewed as a special case of G(w) by taking w to be
(pn, pn, . . . , pn). In this special case, we have d̃ = d = m = np. It is well known that the largest
eigenvalue of the adjacency matrix of G(n, p) is almost surely (1+o(1))np provided that np � log n.
Here we will determine the first eigenvalue of the adjacency matrix of a random graph in G(w).

There are two easy lower bounds for the largest eigenvalues λ, namely, (1 + o(1))d̃ and (1 +
o(1))

√
m. (The proofs can be found in Section 4.) Our main result states that the maximum of the

above two lower bounds is essentially an upper bound.

Theorem 1 For a graph G in G(w), suppose the maximum degree m and second order average
degree d̃ satisfy d̃ >

√
m log n. Then the largest eigenvalue of G is almost surely (1 + o(1))d̃.

Theorem 2 For a graph G in G(w), suppose the maximum degree m and second order average
degree d̃ satisfy

√
m > d̃ log2 n. Then almost surely the largest eigenvalue of the adjacency matrix of

G is (1 + o(1))
√

m.

If the k-th largest expected degree mk satisfies
√

mk > d̃ log2 n and m2
k � md̃ , then almost surely

the i-th largest eigenvalue of a random graph in G(w) is (1 + o(1))
√

mi, for all 1 ≤ i ≤ k.

Theorem 3 The largest eigenvalue of a random graph in G(w) is at most 7
√

log n · max{√m, d̃}.

We remark that with more careful analysis the factor of logn in Theorem 1 can be replaced by
(log n)1/2+ε and the factor of log2 n can be replaced by (log n)3/2+ε for any positive ε provided that
n is sufficiently large. The constant “7” in theorem 3 can be improved. We made no effort to get
the best constant coefficient here.

As an application of Theorems 1 and 2, we prove that the largest eigenvalue of the random power
law graph is (1+o(1))

√
m if β > 2.5, and (1+o(1))d̃ if β < 2.5. A transition happens when β = 2.5.

3 Basic facts

We will use the following concentration inequality for a sum of independent random variables (see
[15]).
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Lemma A. Let Xi (1 ≤ i ≤ n) be independent random variables satisfying |Xi| ≤ M . Let
X =

∑
i Xi. Then we have

Pr(|X − E(X)| > a) ≤ e−
a2

2(V ar(X)+Ma/3) .

We will also use the following one-sided inequality [5] :

Lemma B. Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi

For X =
∑n

i=1 aiXi, we have E(X) =
∑n

i=1 aipi and we define ν =
∑n

i=1 a2
i pi. Then we have

Pr(X < E(X) − t) ≤ e−t2/2ν .

The following lemma, due to Perron ([17], page 36) will also be very useful.

Lemma 1 Suppose the entries of a n×n symmetric matrix A are all non-negative. For any positive
constants c1, c2, . . . , cn, the largest eigenvalue λ(A) satisfies

λ(A) ≤ max
1≤i≤n

{ 1
ci

n∑
j=1

cjaij}.

Proof: Let C be the diagonal matrix diag(c1, c2, . . . , cn). Both A and C−1AC have the same
eigenvalues. All entries of C−1AC are also non-negative. The first eigenvalue is bounded by the
maximum row sum of C−1AC. �

Now we are ready to state our key lemma.

Lemma 2 For any given expected degree sequence w, the largest eigenvalue λ1 of a random graph
in G(w) is almost surely at most

d̃ +
√

6
√

m log n(d̃ + log n) + 3
√

m logn.

In particular, we have λ1 < 2d̃ + 6
√

m log n.

Proof: For a fixed value x (to be chosen later), we define ci, 1 ≤ i ≤ n as follows:

ci =
{

wi if wi > x
x otherwise.

Let A denote the adjacency matrix of G in G(w). The entries aij of A are independent random
variables. Now we apply Lemma 1, choosing Xi = 1

ci

∑n
j=1 cjaij . We have

E(Xi) =
1
ci

n∑
j=1

cjwiwjρ
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=

{ ∑
wj>x w2

j ρ + x
∑

wj≤x wjρ if wi > x
wi

x

∑
wj>x w2

j ρ + wi

∑
wj≤x wjρ otherwise.

≤ d̃ + x;

V ar(Xi) ≤ 1
c2
i

n∑
j=1

c2
jwiwjρ

=

{
1

wi

∑
wj>x w3

j ρ + x2

wi

∑
wj≤x wjρ if wi > x

wi

x2

∑
wj>x w3

j ρ + wi

∑
wj≤x wjρ otherwise.

≤ m

x
d̃ + x;

By Lemma A, we have

Pr(|Xi − E(Xi)| > a) ≤ e
− a2

2(V ar(Xi)+ma/3x) .

Here we choose x =
√

m log n and a =
√

6(m
x d̃ + x) log n + 2m

x log n. With probability at least

1 − o( 1
n ), we have Xi < d̃ + x + a for every fixed 1 ≤ i ≤ n. So we can conclude that almost surely

Xi < d̃ + x + a holds simultaneously for all 1 ≤ i ≤ n.

By Lemma 1, we have (almost surely)

λ ≤ d̃ +
√

6
√

m log n(d̃ + log n) + 3
√

m log n,

as desired. �

4 Proofs for the main theorems

This section presents the proofs of Theorems 1-3. We note that Theorem 1 is an easy consequence
of Lemma 2. Theorem 2 requires some work and Theorem 3 is an immediate consequence of Lemma
2.

Proof of Theorem 1. We only need to prove the lower bound. Let A be the adjacency matrix of
a random graph G in G(w). We define

α =
1√∑n
i=1 w2

i

(w1, w2, . . . , wn)∗

where x∗ denotes the transpose of x. Let X = α∗Aα = 1P
n
i=1 w2

i
(2

∑
i<j wiwjXi,j +

∑
i w2

i Xi,i).
Here Xi,j is the 0-1 random variable with Pr(Xi,j = 1) = wiwjρ. We will use Lemma B to prove a
lower bound on X . Notice that

5



E(X) =
1∑n

i=1 w2
i

(2
∑
i<j

w2
i w2

j ρ +
∑

i

w4
i ρ)

=
n∑

i=1

w2
i ρ

= d̃

and

ν =
1

(
∑n

i=1 w2
i )2

(4
∑
i<j

w3
i w3

j ρ +
∑

i

w6
i ρ)

≤ 2(
∑n

i=1 w3
i∑n

i=1 w2
i

)2ρ

≤ 2m2ρ

Apply Lemma B with t =
√

2m2ρ log n, we have that with probability 1 − e− log n/2 = 1 − o(1),

X > d̃ −
√

2m2ρ log n = (1 + o(1))d̃.

Since λ ≥ X , it follows that almost surely λ ≥ (1 + o(1))d̃.

By the assumption of d̃ >
√

m log n, Lemma 2 implies that (almost surely) λ ≤ (1+ o(1))d̃. This
and the previous fact complete the proof of Theorem 1. �

Proof of Theorem 2. We will first establish upper bounds for λi, 0 ≤ 1 ≤ k, under the assumptions
of Theorem 2. In the following proof, we use a weaker assumption that

√
mk > (d̃ + 1) log1.5+ε n for

any positive ε. Note that m = m1. We will first show that λ1 < (1 + o(1))
√

m.

Choose s = m
log1+ε/2 n

and t = d̃ log1+ε/2 n. Let S denote the set of vertices with weights greater
than s, and let T denote the set of vertices with weights less than or equal to t. Let S̄ and T̄ be the
complements of S and and T , respectively.

Since s > t, S and T are disjoint sets. G is covered by the following three subgraphs: G(S̄)–the
induced subgraph on S̄, G(T̄ )–the induced subgraph on T̄ , and G(S, T )–the bipartite graph between
S and T . It is not hard to verify that

Vol(S) ≤ d̃

sρ
.

Both G(S̄) and G(T̄ ) are random graphs so that Lemma 2 can be applied. The maximum weight
of G(S̄) is at most s. We note that d̃(G(S̄)) =

∑
i∈S̄ w2

i ρ ≤ d̃. By Lemma 2, almost surely we have

λ1(G(S̄)) ≤ 2d̃ + 6
√

s log n = o(
√

m).

Similarly d̃(G(T̄ )) =
∑

i∈T̄ w2
i ρ ≤ d̃. The maximum weight of G(T̄ ) is at most

mVol(T̄ )ρ ≤ m
d̃

t
=

m

log1+ε/2 n
.
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By Lemma 2, almost surely we have

λ1(G(T̄ )) ≤ 2d̃ + 6
√

m

log1+ε/2 n
log n = o(

√
m).

Next we consider the largest eigenvalue of G(S, T ).

Claim 1. The following holds almost surely. For any vertex i ∈ S, all but d̃2 log2+ε n of its neighbors
in T have degree 1 in G(S, T ).

Proof of Claim 1. Fix a vertex i ∈ S and expose its neighbors in T . With probability 1 − o(1/n),
i has at most (1 + o(1))m neighbors in T . For any neighbor k ∈ T of i, the expected number of
neighbors of k (other than i) in S is at most

µ ≤ E(
∑

j∈S\i

Xkj)

≤ wkVol(S)ρ

≤ t
d̃

s

=
d̃2

m
log2+ε n

<
1

log n
.

It follows that the expected number of neighbors of i with more than one neighbors in S is
at most (1 + o(1))mµ ≤ (1 + o(1))d̃2 log2+ε n. Using Lemma A, it is easy to show that with
probability 1 − o(1/n), the number of neighbors of i with more than one neighbors in S is at most
(1 + o(1))d̃2 log2+ε n. The claim follows from the union bound.

Claim 2. Almost surely, the maximum degree of vertices in T in G(S, T ) is at most 3 logn.

Proof of Claim 2. The expected degree of a vertex i ∈ T in G(S, T ) is wiVol(S)ρ ≤ td̃
s < 1

log n . A
routine application of Lemma A shows (with room to spare) that with probability 1 − o(1/n), the
degree of i in S is at most 3 logn. Again the union bound completes the proof.

Let G1 be the subgraph of G(S, T ) consisting of all edges with degree 1 in T . Let G2 be the
subgraph of G(S, T ) consisting of all edges not in G1. G1 is an disjoint union of stars. The maximum
expected degree is at most (1 + o(1))m. We have

λ1(G1) ≤ (1 + o(1))
√

m.

The largest eigenvalue of G2 is bounded above by
√

mSmT , where mS and mT are the maximum
degrees in S and T , respectively. Claims 1 and 2 show that mS ≤ d̃2 log2+ε n and mT ≤ log n. By
Lemma 1, we have

λ1(G2) ≤ √
mSmT

≤ d̃ log3/2+ε/2 n

= o(
√

m)
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Hence, we have

λ1(G) ≤ λ1(G(S̄)) + λ1(G(T̄ )) + λ1(G1) + λ1(G2) ≤ (1 + o(1))
√

m.

Now, consider G′ = G \ {v} for any vertex v. Let λi(G) denotes the i-th largest eigenvalue of G.
The well-known interlacing theorem (see [10]) asserts that

λi(G) ≥ λi(G′) ≥ λi+1(G).

Suppose that vertex vi has i-th largest expected degree mi and Gi = G \ {v1, . . . , vi−1}. It is easy
to check that the second order average degree of Gi is no greater than d̃ and the largest expected
degree of Gi is (1 + o(1))mi provided i ≤ k. By the first part of the theorem, we have

λ1(Gi) ≤ (1 + o(1))
√

mi.

By repeated using interlacing theorem, we have

λi(G) = λi(G1)
≤ λi−1(G2)
≤ . . .

≤ λ1(Gi)
≤ (1 + o(1))

√
mi.

Now we turn to the lower bound on λi’s. We will use two helpful facts that are immediate
consequences of the interlacing theorem and the Courant-Fisher theorem.

Claim 3. Suppose H is an induced subgraph of G. Then λi(G) ≥ λi(H) for all 1 ≤ i ≤ |V (H)|.
Claim 4. Suppose F is a subgraph of a graph H . Then

λi(H) ≥ λi(F ) − λ1(F ′)

where F ′ has edge set consisting of all edges of H not in F .

To prove the lower bound λi > (1+o(1))
√

mi it suffices to find an induced subgraph H of G with
eigenvalues λi(H) ≥ 1 + o(1)

√
mi for 1 ≤ i ≤ k. Let S consists of vertices with weights m1, . . . , mk.

Let U denote the set of neighbors of S in T where T is defined as before. Let H be the induced
subgraph of G on S ∪ U . H is the union of three graphs: the induced graphs G(S), G(U), and the
bipartite graph G(S, U).

G(T ) is a random graph and G(U) is a subgraph of G(T ). By Lemma 2, we have

λ1(G(U)) ≤ λ1(G(T )) ≤ 2d̃ + 6
√

t log n = o(
√

mk).

The maximum weight of G(S) is at most mVol(S)ρ. We consider two possibilities:

Case 1. mVol(S)ρ < d̄ log2 n. In this case, we have

λ1(G(S)) ≤ 2d̃ + 6
√

mVol(S)ρ log n = o(
√

mk).
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Case 2. mVol(S)ρ > d̄ log2 n. In this case we have

λ1(G(S)) ≤ (1 + o(1))
√

mVol(S)ρ

≤ (1 + o(1))

√
md̃

mk

≤ o(
√

mk)

since m2
k � md̃. In both cases, we used the inequality

Vol(S)min
i∈S

wi ≤ d̃Vol(G),

which follows easily from the definition of Vol and d̃.

In the bipartite graph G(S, U), we define a spanning forest F as follows. The edges of F are, for
i = 1, . . . , k, from vertex i to U \ ∪i−1

j=1(Γ(j) ∩ T ) where Γ(j) ∩ T is the neighbors of j in T . Let R
be the bipartite subgraph containing edges not in F .

The volume of T is almost equal to the volume of G since

Vol(T ) = Vol(G) − Vol(T̄ ) ≥ Vol(G)(1 − d̃

t
) = (1 − o(1))Vol(G).

Thus, the size of Γ(j) ∩ T almost surely is (1 + o(1))mj . We have

Vol(∪i−1
j=1Γ(j) ∩ T ) ≤

i−1∑
j=1

(1 + o(1))mjt ≤ (1 + o(1))
d̃

mi
tVol(G).

The expected degree of i in R is at most

miVol(∪i−1
j=1Γ(j) ∩ T )ρ ≤ (1 + o(1))d̃t.

By Chernoff’s Inequalities, it is easy to show the maximum degree of i in R is at most 2d̃t. On the
other hand, the maximal degree of any vertex u ∈ U in R is at most 3 log n by Claim 2. Therefore,
we have

λ1(R) ≤
√

2d̃t3 log n = o(
√

mk).

Now, F is the disjoint union of k stars with sizes (1 + o(1))mi for i = 1, . . . , k. We have λi(F ) =
(1 + o(1))

√
mi, for i = 1, . . . , k. Hence, we have

λi(G) ≥ λi(H) ≥ λi(F ) − λ1(G(S)) − λ1(G(U)) − λ1(R) = (1 + o(1))
√

mi

for 1 ≤ i ≤ k, completing the proof. �

5 Random power law graphs

In this section, we consider random graphs with power law degree distribution with exponent β. We
choose the degree sequence G(w) = (w1, w2, . . . , wn) satisfying wi = ci−

1
β−1 for i0 ≤ i ≤ n + i0.
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Here c is determined by the average degree and i0 depends on the maximum degree m, namely,
c = β−2

β−1dn
1

β−1 , i0 = n( d(β−2)
m(β−1))

β−1. It is easy to verify that the number of vertices of degree k is
proportional to k−β .

The second order average degree d̃ can be computed as follows:

d̃ =




d (β−2)2

(β−1)(β−3)(1 + o(1)) if β > 3.
1
2d ln 2m

d (1 + o(1)). if β = 3.

d (β−2)2

(β−1)(3−β)(
(β−1)m
d(β−2) )3−β(1+o(1)). if 2<β <3.

We remark that for β > 3, the second order average degree is independent of the maximum degree.
Consequently, the power law graphs with β > 3 are much easier to deal with. However, many massive
graphs are power law graphs with 2 < β < 3, in particular, Internet graphs [13] have exponents
between 2.1 and 2.4.

Theorem 4

1. For β ≥ 3, suppose the maximum degree m satisfies

m > d2 log3 n (1)

where d is the average degree. Then almost surely the largest eigenvalue of the random power
law graph G is (1 + o(1))

√
m.

2. For 3 > β > 2.5, suppose m satisfies

m > d
β−2

β−2.5 log
3

β−2.5 n. (2)

Then almost surely the largest eigenvalue of the random power law graph G is (1 + o(1))
√

m.

3. For 2 < β < 2.5 and m > log
3

2.5−β n, almost surely the largest eigenvalue is (1 + o(1))d̃.

4. For k < n( d
m log n )β−1 and β > 2.5, almost surely the k largest eigenvalues of the random power

law graph G with exponent β have power law distribution with exponent 2β − 1, provided that
m is large enough (satisfying (1), (2)).

We remark that the powers of log n can be slightly improved, as well as the results for the case
of β = 3. We do not attempt to optimize such estimates here.

Proof of Theorem 4: If β ≥ 3, clearly
√

m > d̃ log2/3 n. By Theorem 2, almost surely the
largest eigenvalue of the random power law graph G is (1 + o(1))

√
m.

If 3 > β > 2.5, it is straightforward to verify
√

m > d̃ log3 n. By Theorem 2, almost surely the
largest eigenvalue of the random power law graph G is (1 + o(1))

√
m.

When β < 2.5, we have d̃ >
√

m log n. The result follows from Theorem 1.

To prove (4), we first note that k ≤ n( d
m log n )β−1 implies that k ≤ n/(d log4 n)β−1 for β ≥ 3,

and k < n/(d log7 n)(β−1)/(2β−5) for 3 > β > 2.5.
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Now, for k ≤ n/(d log4 n)β−1 and β ≥ 3, we have k < i0[( m
d2 log3 n

)β−1 − 1]. Thus,

mk = m(
i0

i0 + k
)1/(β−1)

≥ d2 log3 n.

For 3 > β > 2.5 and k < n/(d log7 n)(β−1)/(2β−5), we have k < i0[( m
dβ−2)/(β−2.5) log3/(β−2.5) n

)β−1 − 1].
Thus,

mk = m(
i0

i0 + k
)1/(β−1)

> d
β−2

β−2.5 log
3

β−2.5 n

In both cases, one can verify that the assumptions of Theorem 2 are met. Thus, Theorem 2 implies
that for all 1 ≤ i ≤ k, the i-th largest eigenvalue is (almost surely) (1 + o(1))

√
mi. On the other

hand, the mi’s have a power distribution with exponent β. By a routine calculation, one can show
that

√
mi’s have a power distribution with exponent 2β − 1 and this concludes the proof. �

6 Problems and remarks

We have proved that the largest eigenvalue λ of G in G(w) is roughly equal to d̃ or
√

m if one of
them is much larger than the other. What happens when d̃ and

√
m are comparable? Is it true that

λ = (1 + o(1))max{√m, d̃}? The following example shows that λ(G) can be larger than d̃ and
√

m
by a constant factor.

Example. For given m satisfying m > log2 n and d constant, we choose the expected degree
sequence as follows: There are n1 = nd

m3/2 = o(n) vertices with weight m. The remaining vertices
have weight d. We then have

Vol(G) = n1m + (n − n1)d ≈ nd,

d̃ = n1m
2ρ + (n − n1)d2ρ ≈ √

m.

Our random graph is defined with this special degree sequence.

Claim 5. The largest eigenvalue λ of the adjacency matrix of G(w) is almost surely at least (1 −
o(1))1+

√
5

2

√
m > 1.618

√
m.

Proof of Claim 5. Let S be the set of vertices with weight m, and T be the remaining vertices. Since
Vol(S) ≈ 1√

m
Vol(G) and Vol(T ) ≈ Vol(G), the expected number of neighbors in T for a vertex in S

is about m, while the expected number of neighbors in S for a vertex in T is about d√
m

= o(1). It
can be shown that a random graph G in G(w) almost surely contains n1 disjoint union of stars of
size m′ = (1 + o(1))m with centers in S. As always, A denotes the adjacency matrix of G.

Recall that λ(A) ≥ α∗Aα for any unit vector α. We next present a vector α such that the
expectation of α∗Aα is significantly larger than

√
m. For any vertex u, the coordinates αu is defined
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as follows:

αu =




√
c√

n1
if u ∈ S

√
1−c√

n1m′ if u is a leaf of the stars.
0 otherwise.

Here c = (1 + 1/
√

5)/2 is a constant maximizing E(α∗Aα).

Clearly, α is a unit vector. We have

E(α∗Aα) ≥ n2
1m

2ρ
c

n1
+ 2n1m

′
√

c√
n1

√
1 − c√
n1m′

≈ √
m(c + 2

√
c(1 − c))

=
1 +

√
5

2
√

m.

With the assumption m > log2 n, we conclude that almost surely α∗Aα is greater than (1+
√

5
2 +

o(1))
√

m, completing the proof. �

We proved that the statement λ = (1 + o(1))max{√m, d̃} is false. However, it looks plausible
that λ could be (almost surely) upper bounded by (1 + o(1))(d̃ +

√
m) provided that d̃ +

√
m is

sufficiently large (i.e, ω(log n)).
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